期刊文献+

关于局部对偶平坦且具有迷向S-曲率的Matsumoto度量(英文) 被引量:4

On Locally Dually Flat Matsumoto Metrics with Isotropic S-Curvature
下载PDF
导出
摘要 找到了一些方程去刻画局部对偶平坦的Matsumoto度量F=α2/α-β,其中α=aijyiyj,β=biyi.同时对局部对偶平坦且具有迷向S-曲率的Matsumoto度量进行了分类. Matsumoto metrics forms an important class of Finsler metrics in the form of F=α2/α-β,where α=aijyiyj denotes a Riemannian metric and β=bi(x)yi denotes a 1-form on a manifold.In this paper,the author finds some equations that characterize locally dually flat Matsumoto metrics and classify those with isotropic S-curvature.
作者 蒋经农
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期48-50,共3页 Journal of Southwest China Normal University(Natural Science Edition)
基金 遵义医学院自然科学基金项目(F-259)
关键词 芬斯勒度量 Matsumoto度量 局部对偶平坦的芬斯勒度量 S-曲率 Finsler metric Matsumoto metric locally dually flat Finsler metric S-curvature
  • 相关文献

参考文献4

二级参考文献36

  • 1李梁,崔宁伟,王佳.一类射影平坦且具有常曲率的(α,β)度量[J].西南师范大学学报(自然科学版),2006,31(6):28-31. 被引量:7
  • 2童殷,王佳.具有常曲率的芬斯勒空间(英文)[J].西南师范大学学报(自然科学版),2005,30(5):792-795. 被引量:2
  • 3Cheng X Y. Riemannian Curvature and Ricei Curvature of (α, β) -Metrics [J]. J of Math, to appear.
  • 4Zhou L F. Some Results on a Class of (α, β) -Metrics with Constant Flag Curvature[J]. Diff Geom and Its Applications, to appear.
  • 5Chern S S, Shen Z M. Riemann-Finsler Geometry [M]. Singore: World Scientific Publishers, 2005.. 130- 135.
  • 6Shen Z M, Yildirim G C. On a Class of Projectively Flat Metrics with Constant Flag Curvature [J]. Canadian J Math, 2008, 60(2): 443-456.
  • 7Shen Z M. Landsberg Curvature, S-Curvature, and Riemann Curvature [M]. Cambridge.. Cambridge University Press, 2004.
  • 8Matsumoto M. The Berwald Connection of Finsler Space with an (α, β) -Metric [J]. Tensor N S, 1991, 50:18 --21.
  • 9Cheng X Y, Shen Z M. Randers Metric with Special Curvature Properties [J]. Osaka J Math, 2003, 40:87 - 101.
  • 10Cheng X Y, Shen Z M. A Class of Finsler Metrics with Isotropic S-Curvature [J]. Israel Journal of Mathematics, 2009, 169: 317--340.

共引文献31

同被引文献13

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部