摘要
找到了一些方程去刻画局部对偶平坦的Matsumoto度量F=α2/α-β,其中α=aijyiyj,β=biyi.同时对局部对偶平坦且具有迷向S-曲率的Matsumoto度量进行了分类.
Matsumoto metrics forms an important class of Finsler metrics in the form of F=α2/α-β,where α=aijyiyj denotes a Riemannian metric and β=bi(x)yi denotes a 1-form on a manifold.In this paper,the author finds some equations that characterize locally dually flat Matsumoto metrics and classify those with isotropic S-curvature.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第3期48-50,共3页
Journal of Southwest China Normal University(Natural Science Edition)
基金
遵义医学院自然科学基金项目(F-259)