期刊文献+

基于信赖域的序贯拟蒙特卡洛滤波算法 被引量:7

Trust Region Based Sequential Quasi-Monte Carlo Filter
下载PDF
导出
摘要 针对系统状态估计、目标跟踪等是包含多源不确定性信息的非线性非高斯随机过程,提出了一种基于信赖域的序贯拟蒙特卡洛(Sequential Quasi-Monte Carlo,SQMC)滤波算法.该算法利用拟蒙特卡洛积分技术优化采样粒子在状态空间的分布特性,降低了滤波过程中的积分误差,提高了状态估计精度;同时,利用信赖域(Trust Region,TR)方法将采样粒子向高似然区域移动,减少了所需采样粒子的数目,降低了算法复杂度.实验结果表明:该算法有效克服了粒子贫乏和拟蒙特卡洛滤波计算复杂度高的问题,且在非线性系统状态估计精度以及目标跟踪的准确性上要优于粒子滤波和拟蒙特卡洛滤波等现有算法. A trust region based sequential quasi-Monte Carlo filter is proposed for system state estimation and object tracking which are the non-linear and non-Gaussian random procedures with multi-source uncertain information.In the proposed algorithm,the quasi-Monte Carlo(QMC) technique is used to optimize the distribution of the sampling particles in the state space,which can obtain a small error of the integration in the filtering process and a better accuracy of the state estimation.Furthermore,a trust region(TR) procedure is used to move particles to regions of high likelihood,which results in a fewer particle selection and lower computational cost.Experimental results show that the proposed algorithm overcomes the particle impoverishment,reduces the computational complexity of the QMC filter,and gets a more accuracy estimation than existing algorithms such as particle filter and QMC filter in system state estimation and object tracking.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第A03期24-30,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60774092 No.60901003) 教育部博士点基金(No.20070294027) 国家863高技术研究发展计划(No.2007AA11Z227)
关键词 拟蒙特卡洛滤波 信赖域 状态估计 目标跟踪 Quasi-Monte filter trust region state estimation object tracking
  • 相关文献

参考文献16

  • 1Andrieu C, Doucet A, Singh S S, et al. Particle methods for change detection, system identification, and control[J]. Proceedings of the IEEE,2004,92(3) :423 - 438.
  • 2Arulampalam M S,MaskeU S,Gordon N, et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[ J ]. IEEE Transactions on Signal Processing, 2002, 50 (2) : 174 - 188.
  • 3Doucet A, Godsill S, et al. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing, 2000,10(3) : 197 - 208.
  • 4Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[ J]. lEE Proceedings, 1993,140(2) : 107 - 113.
  • 5Liu J, Chen R. Sequential Monte-Carlo methods for dynamic systems[J]. Jounlal of the American Statistical Association, 1998,93(443) : 1032 - 1044.
  • 6莫以为,萧德云.基于粒子滤波算法的混合系统监测与诊断(英文)[J].自动化学报,2003,29(5):641-648. 被引量:34
  • 7Campillo F, Rossi V. Convolution particle filter for parameter estimation in general state-space models[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 ( 3 ) : 1063 - 1072.
  • 8Polson N G, Stroud J R, Muller P. Practical filtering with sequential parameter leaming[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2008,70 (2) : 413 - 428.
  • 9刘先省,胡振涛,金勇,杨一平.基于粒子优化的多模型粒子滤波算法[J].电子学报,2010,38(2):301-306. 被引量:21
  • 10侯代文,殷福亮,陈喆.基于拟蒙特卡洛滤波的说话人跟踪方法[J].自动化学报,2009,35(7):1016-1021. 被引量:10

二级参考文献69

  • 1杨小军,潘泉,张洪才.基于Monte Carlo方法的自适应多模型诊断[J].控制理论与应用,2005,22(5):723-727. 被引量:4
  • 2彭冬亮,文成林,徐晓滨,薛安克.随机集理论及其在信息融合中的应用[J].电子与信息学报,2006,28(11):2199-2204. 被引量:24
  • 3Potamitis I,Chen H M,Tremoulis G.Tracking of multiple moving speakers with multiple microphone arrays.IEEE Transactions on Speech and Audio Processing,2004,12(5):520-529
  • 4Brandstein M A.A Framework for Speech Source Localization Using Sensor Arrays[Ph.D.dissertation],Brown University,USA,1995
  • 5Dvorkind T,Gannot S.Speaker localization exploiting spatial-temporal information.In:Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control.Kyoto,Japan:IEEE,2003.295-298
  • 6Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation,IEE Proceedings on Radar and Signal Processing,1993,140(2):107-117
  • 7Liu J S,Chen R.Sequential Monte Carlo methods for dynamic systems.Journal of the American Statistical Association,1998,93(443):1032-1044
  • 8Vermaak J,Blake A.Nonlinear filtering for speaker tracking in noisy and reverberant environments.In:Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Salt Lake City,USA:IEEE,2001.3021-3024
  • 9Ward D B,Lehmann E A,Williamson R C.Particle filtering algorithms for tracking an acoustic source in a reverberant environment.IEEE Transactions on Speech and Audio Processing,2003,11(6):826-836
  • 10Guo D,Wang X D.Quasi-Monte Carlo filtering in nonlinear dynamic systems.IEEE Transactions on Signal Processing,2006,54(6):2087-2098

共引文献189

同被引文献54

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部