期刊文献+

粗糙核Marcinkiewicz积分在Campanato空间的加权有界性 被引量:1

Weighted Boundedness of Marcinkiewicz Integrals with Rough Kernels on Campanato Spaces
下载PDF
导出
摘要 借助于Marcinkiewicz积分μΩ的加权Lp有界性的结论,使用经典的不等式估计,并应用加权Campanato空间的性质,本文证明了粗糙核Marcinkiewicz积分在加权Cam-panato空间的有界性。该结论补充了奇异积分算子的相关理论。 Based on the results of the boundedness of Marcinkiewicz integrals on weighted Lp spaces, by u- sing the estimates of classical inequality and the properties of the weighted Campanato spaces, the boundedness of the Marcinkiewicz integrals μΩ with rough kernel on Campanato spaces is obtained. This result enriches the relevant concausions of the theory of singular integral operators.
出处 《青岛大学学报(自然科学版)》 CAS 2011年第2期15-19,共5页 Journal of Qingdao University(Natural Science Edition)
关键词 MARCINKIEWICZ积分 粗糙核 CAMPANATO空间 有界性 Marcinkiewicz integrals rough kernel Campanato space weighed boundedness
  • 相关文献

参考文献3

二级参考文献11

  • 1陶双平,司颖华.带粗糙核的Marcinkiewicz积分算子在齐次Morrey-Herz空间的有界性[J].西北师范大学学报(自然科学版),2007,43(1):1-7. 被引量:7
  • 2STEIN E M. On the function of Littlewood-paley, I.usin and Marcinkiewicz[J]. Trans Amer Math, 1958, 88:430-466.
  • 3BENEDEK A, CALDERON A, PANZONE R. Convolution operator on Banach space valued functions[J]. Proc Nat Acafl Sci USA, 1962,48:356-365.
  • 4DING Y, FAN D, PAN Y. L^P-boundedness of Marcinkiewicz integrals with Hardy space function kernels[J]. Acta Math Sinica: English Series, 2000,16:593- 600.
  • 5TORCHINSKY A, WANG S L. A note on the Marcinkiewicz integrals[J]. Colloq Math, 1990,60:235-243.
  • 6WANG Y S. Littlewood-paly g-operator on weighted Campanato spaces[J]. J of Henan Normal University: Natural Science, 1995,23:22-25.
  • 7DING Y, LU S Z, XUE Q Y. On Marcinkiewicz integral with homogeneous kernels[J]. J of Mathematical Analysis and Application, 2000,245 : 471-488.
  • 8WANG S L. Boundedness of the Littlewood-paly gfunction onLipn(R^n)(0<α<1) Ⅲ[J]. J Math, 1989, 33:531-541.
  • 9JIANG Li-ya. Boundedness of certain Marcinkiewicz integral operators on product spaces[J]. J of Zhejiang University: Science Edition, 2005,32(6) :611-615.
  • 10李冉.带变量核参数型Marcinkiewicz积分的有界性[J].北京师范大学学报(自然科学版),2007,43(6):599-605. 被引量:12

共引文献9

同被引文献14

  • 1张璞,陈杰诚.一类带有变量核的积分算子在Herz型Hardy空间的有界性[J].数学年刊(A辑),2004,20(5):561-570. 被引量:12
  • 2John F,Nirenberg L.On functions of bounded mean oscillation. Communications of the ACM . 1961
  • 3Lars H?rmander.??Estimates for translation invariant operators inLp spaces(J)Acta Mathematica . 1960 (1)
  • 4Campanato S.Proprieta di holderianita di alcune classi di funzioni. Annali Della Scuola Normale Superiore di Pisa Classe di Scienze . 1963
  • 5A. P. Calderón,A. Zygmund.??On a problem of Mihlin(J)Transactions of the American Mathematical Society . 1955 (1)
  • 6Sakamoto M,Yabuta K.Boundedness of Marcinkiewicz functions. Studia Mathematica . 1999
  • 7Yong Ding,Chin-Cheng Lin,Shuanglin Shao.On the Marcinkiewicz integral with variable kernels. Indiana University Mathematics Journal . 2004
  • 8Yong Ding,Qingying Xue,K?z? Yabuta.Existence and boundedness of parametrized Marcinkiewicz integral with rough kernel on Campanato spaces. Nagoya Mathematical Journal . 2006
  • 9韩永生.??关于s-函数和Harcinkiewicz积分的一些性质(J)北京大学学报(自然科学版). 1987(05)
  • 10陈艳萍,丁勇.广义Morrey 空间上带变量核的Littlewood-Paley 算子[J].数学物理学报(A辑),2009,29(3):630-642. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部