期刊文献+

一种有效的Batch RSA算法的研究 被引量:2

Research of an Efficient Variant of Batch RSA Algorithm
下载PDF
导出
摘要 提出了一种改进的Batch RSA算法来提升Batch RSA算法的解密性能。该改进算法结合了负载转移技术和Multi-Power RSA技术,在Batch RSA算法的指数计算阶段提升Batch RSA算法的解密性能。实验结果和理论分析表明,该改进算法使得Batch RSA算法的解密性能得到显著提升,且易于并行实现,可使基于多核平台的BatchRSA算法的整体性能得到进一步提升。 This paper aimed at speeding up Batch RSA decryption.An efficient variant of Batch RSA was proposed to improve the Batch RSA decryption performance.The improved Batch RSA variant speeds up decryption by combining the load transferring technique and multi-power RSA technique in the exponentiation phase.The experimental result and the theoretical values show that the speed of the decryption is substantially improved and the variant can be efficiently implemented in parallel and parallel implementation of the variant on multi-core devices can further improve the overall performance of Batch RSA algorithm.
出处 《计算机科学》 CSCD 北大核心 2011年第6期127-132,139,共7页 Computer Science
基金 国家自然科学基金(60963007) 云南省自然科学基金(2007F008M) 云南大学软件学院学科建设基金(2010KS01) 云南大学中青年骨干教师培养计划(21132014)资助 云南省软件工程重点实验室开放基金(2010KS01)
关键词 BATCH RSA MULTI-POWER RSA 解密 加速 并行 多核 Batch RSA Multi-power RSA Decryption Accelerate Parallel Multi-core
  • 相关文献

参考文献22

  • 1Rivest R, Shamir A, Aldeman L. A Methoed for Obtaining Digi- talSignatures and Public-key Cryptosystems[J]. Communica- tions of the ACM, 1978,21 (2) : 120-126.
  • 2Boneh D,Shacham H. Fast Variants of RSA [R]. RSA Labora- tories Cryptobytes, 2002.
  • 3Takagi T. Fast RSA-type cryptosystem modulo pkq [C]// Krawezyk H, eds. CRYPTO, volume 1462 of Lecture Notes in Computer Science. 1998:318-326.
  • 4Takagi T. A fast RSA-type public-key primitive modulo pkq u- sing Hensel lifting [J]. IEICE Transactions, 2004,87 (1) : 94-101.
  • 5Matsumoto T, Kato K. Speeding up secret computations with in- secure auxiliary device [C]//Proc of the 8th Annual Interna- tional Crypto Conference on Advances in Cryptology. London: Springer-Verlag, 1988:497-506.
  • 6FIAT A. Batch RSA[C]//Proc of Crypto '89, LNCS435. Ber- lin~ Springer-Verlag, 1989 : 175-185.
  • 7Shacham H, Boneh D. Improving SSL Handshake Performance via Batching[C]//Proceedings of 2001 'RSA. 2001:28-43.
  • 8Paxson V, Sommer R. An architecture for exploiting multi-core processors to parallelize network intrusion prevention [C]// Proceedings of the IEEE Sarnoff Symposium. 2007:1-7.
  • 9Timothy G, Beverly A. Patterns for Parallel Programming [M]. Boston, MA: Addison-Wesley, 2005.
  • 10Castelluccia C, Mykletun E, Tsudik G. Improving secure server performanee by re-balancing SSL/TLS handshakes [C]//Proc of the 2006 ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2006 : 26-34.

二级参考文献18

  • 1刘近光,梁满贵.多核多线程处理器的发展及其软件系统架构[J].微处理机,2007,28(1):1-3. 被引量:22
  • 2齐芳,贾维嘉,王国军.SSL握手协议中客户端平衡密钥交换算法[J].计算机工程与应用,2007,43(19):1-3. 被引量:3
  • 3RIVEST R, SHAMIR A, ALDEMAN L. A method for obtaining digital signatures and public-key cryptosystems [ J]. Communications of the ACM, 1978, 21(2) : 120 - 126.
  • 4COLLINS T, HOPKINS D, LANGFORD S, et al. Public key cryptographic apparatus and method: US, 4218582 [ P]. 1997.
  • 5BONEH D, SHACHAM H. Fast variants of RSA [ J]. RSA Laboratories Crypto-bytes, 2002, 5(1): 1-8.
  • 6MATSUMOTO T, KATO K. Speeding up secret computations with insecure auxiliary devices [ C] //Proceedings of the gth Annual International Crypto Conference on Advances in Cryptology. London: Springer-Verlag, 1988:497-506.
  • 7PAXSON V, SOMMER R. An architecture for exploiting multi-core processors to parallelize network intrusion prevention [ C]//Proceedings of the IEEE Saruoff Symposium. Washington, DC: IEEE Computer Society, 2007:1 -7.
  • 8SILVERMAN R, WAGSTAFF S. A practical analysis of the elliptic curve factoring algorithm [ J]. Mathematics of Computation, 1993, 61(203) : 455 -462.
  • 9LENSTRA A K, VERHEUL E R. Selecting cryptographic key sizes [ J]. Journal of Cryptology: the Journal of the International Association for Cryptologic Research, 2001, 14(4): 255 -293.
  • 10TIMOTHY G, BEVERLY A. Patterns for parallel programming [ M]. Boston, MA: Addison-Wesley, 2005.

共引文献26

同被引文献34

  • 1Rivest R, Shamir A, Aldeman L.A method for obtaining digital signatures and public-key cryptosystems[J].Communications of the ACM, 1978,21 (2) : 120-126.
  • 2Fiat A.Batch RSA[C]//LNCS 435: Proc of Crypto' 89.Berlin Springer-Verlag, 1989 : 175-185.
  • 3Boneh D,Shacham H.Fast variants of RSA[J].Cryptobytes,2002 5(1):1-8.
  • 4Liu Qing,Li Yunfei,Hao Lin,et al.Two efficient variants of the RSA cryptosystem[C]//Proc IEEE Conf 2010 International Conference on Computer Design and Applications, Qinhuangdao, 2010,5:550-554.
  • 5Liu Qing, Li Yunfei, Li Tong, et al.The research of the Batch RSA decryption performance[J].Journal of Computational Information Systems, 2011,7 (3) : 948-955.
  • 6Matsumoto T,Kato K.Speeding up secret computations with insecure auxiliary devices[C]//Proc of the 8th Annual International Crypto Conference on Advances in Cryptology.London:Springer- Verlag, 1988.
  • 7Castelluccia C, Mykletun E.Improving secure server performance by re-balancing SSL/TLS handshakes[C]//Proc of the 2006 ACM Symposium on Information, Computer and Communications Security. New York:ACM,2006:26-34.
  • 8Silverman R, Wagstaff S.A practical analysis of the elliptic curve factoring algorithm[J].Mathematics of Computation,1993, 61 (203).
  • 9Lenstra A K, Verheul E R.Selecting cryptographic key sizes[J]. Journal of Cryptology:The Journal of the International Associa- tion for Cryptologic Research,2001,14(4):255-293.
  • 10Viega J, Messier M, Chandra P.Network security with OpenSSL[M]. [S.I.] : O' Reilly, 2002.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部