期刊文献+

基于贝叶斯网络的草图符号识别研究 被引量:6

Research of Sketch Symbol Recognition Based on Bayesian Network
下载PDF
导出
摘要 针对草图识别算法大多通过限制用户绘制习惯来提高识别精确度的问题,提出一种动态构造贝叶斯网络模型的草图符号识别方法。该方法采用了从下而上与从上而下相结合的识别算法。从下而上实现笔画的分割,根据后验概率产生假设模板,继而产生图形模板。在从上而下的处理中,通过假设模板重构实现笔画重组、根据图形模板的空槽实现笔画识别的纠错处理。通过对UML领域中草图符号的识别,表明算法能在不限制用户绘制习惯的基础上取得较好的识别效果。 To solve the current algorithm's limitation of restricting the users' drawing style,this article introduced a method of dynamically constructing Bayes net to sketch symbol recognition system.This paper adopted a identifying algorithm which is a combination of bottom-top and top-bottom.From bottom to top it realizes the segmentation of strokes,generating hypothesis templates according to posterior probability then generating graphics templates.From top to bottom it realizes regrouping strokes through reconfiguring hypothesis templates and handling nosiy input according to the empty slot of templates.Through being applied to the domain of UML,we can get better recognition effect without restricting users' freely input.
出处 《计算机科学》 CSCD 北大核心 2011年第6期262-265,共4页 Computer Science
关键词 贝叶斯网络 先验概率 后验概率 符号识别 假设模板 Bayesian network Prior probability Posterior probability Symbol recognition Hypothesis templates
  • 相关文献

参考文献9

  • 1Fonseca M J, Pimentel C, Jorge J A. CALh an online scribble recognizer for calligraphic interface[C] // Proceedings of AAAI Spring Symposium on Sketch Understanding. 2002:51-58.
  • 2Casella V M G C G, Deufemia V, Martelli M. An agent-based framework for sketched symbol interpretation[J]. Journal of Visual Languages and Computing, 2008,19(2) : 225-257.
  • 3Sahoo G, Singh B. A New Approach to Sketch Recognition U- sing Heuristic [J]. International Journal of Computer Science and Network Security, 2008,8 (2) : 102-108.
  • 4Hammond T, Davis R. LADDER: A language to describe dra- wing,display, and editing in sketch recognition[C]//Proc, of IJ- CAI'03. 2003 : 461-467.
  • 5Alvarado C, Davis R. SketchREAD: a multi-domain sketch reco- gnition engine[C]//Proceedings of User Interface and Software Technology(UIST'04). 2004 : 23-32.
  • 6Avola D, Buono A D, Gianforme G, et al. SketchML a represen- tation language for novel sketch recognition approach[C]//Pro- ceeding of the 2nd International Conference on PErvsive Tech- nologies Related to Assistive Environments. 2009.
  • 7Alvarado C. Multi-domain Sketch Understanding [D]. United States: Massachusetts Institute of Technology, 2004.
  • 8Chamiak E. Bayesian networks without tears: making Bayesian networks more accessible to the probabilistically unsophisticated [J]. Artificial Intelligence, 1991,12(4) : 50-63.
  • 9Liao Shi-zhong, Wang Liao, Lu Jin-liang, et al. An incremental Bayesian approach to sketch recognition[C]//Proceedings of the Fourth International Conference on Machine Learning and Cy- bernetics. 2005 : 18-21.

同被引文献67

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部