期刊文献+

GARBF在网络入侵检测中的应用研究 被引量:6

Application of Intrusion Detection Based on RBFNN and Genetic Algorithm
下载PDF
导出
摘要 研究网络安全问题,提高入侵检测效率,针对网络入侵检测传统采用RBF神经网络方法在网络入侵中由于初始权值设定不当导致检测入侵耗时长、正确检测率低,误报和漏报率记的难题,为了解决上述问题,提出了一种GARBF神经网络入侵检测模型。GARBF神经网络模型在网络入侵检测过程中,采用遗传算法对RBF神经网络初始权值进行优化,然后将网络入侵数据输入优化的RBF神经网络中进行学习和检测。结果表明,相比较传统网络入侵检测模型,网络入侵检测误报率、耗时都较低,证明提高网络入侵检测的正确性和效率。 Researching network intrusion detection problem.The initial value set of traditional neural network is random,which may produce incorrect initial weights set and lead the training of traditional neural network algorithm time-consuming and the detection rate is not high.This paper puts forward a hybrid model of neural network optimized by genetic algorithm,using genetic algorithm to optimize the parameters of RBF neural network,putting the optimized results directly into the RBF neural network training,and at last,using the optimized parameters to test the data of RBF neural network.Compared with traditional BP neural network and RBF neural network,the experimental results showed that the GARBF neural network detection rate is higher,and time-consuming is lower,which explained that the RBF neural network optimized by genetic algorithm is effective and feasible.
作者 周敏
出处 《计算机仿真》 CSCD 北大核心 2011年第6期165-168,共4页 Computer Simulation
关键词 遗传算法 神经网络 优化 入侵检测 Genetic algorithm Neural network Optimization Intrusion detection
  • 相关文献

参考文献8

二级参考文献80

共引文献74

同被引文献36

  • 1赵俊忠,游林,徐茂智,孙善利,黄厚宽.入侵检测系统中检测技术的研究[J].计算机工程与应用,2005,41(2):11-13. 被引量:16
  • 2江铭炎,袁东风.人工鱼群算法及其应用[M].北京:科学出版社,2012.
  • 3戴英侠.系统安全与人侵检测[M].北京:清华大学出版社,2002.
  • 4Denning D E. An Intrusion Detection Model [ J ]. IEEE Transaction on Software Engineering,2010,13 (2) :222 - 232.
  • 5Durga Prasad Muni, Nikhil R Pal,Jyotirmoy Das. Genetic programming for simultaneous feature selection and classifier design [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, February, 2009,36 ( 1 ) : 106 - 117.
  • 6Kennedy J, Eberhart R C. Particle swarm optimization [ C ]//Proc of IEEE International Conference on Neural Networks,USA:IEEE Press, 2005 : 1942 - 1948.
  • 7Mehrabian A R, Lueas C. A novel numerical optimization algorithm in- spired from weed colonization [ J ]. Ecological lnfomlatics, 2006, l (3) :355 - 366.
  • 8Mallahzadeh A R, Oraizi H, Davoodi R Z. Application of the invasive weed optimization technique for antenna configurations[ J]. Progress in Electromagnetic Research,2008,20 ( 79 ) : 137 - 150.
  • 9DENNING D. E, An Intrusion Detection Model[J]. IEEE Transaction on Soi'tware Engineering, 2010,13 (2), 222- 232.
  • 10Durga Prasad Muni, Nikhil R Pal, Jyotirmoy Das. Genetic programming for simultaneous feature selection and classifier design[J~. IEEE Transactions on Systems, Man, and Cyber- netics Part B, February, 2009,36(1) ~106- 117.

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部