摘要
The interactions of dihydrogen with lithium containing organic complexes C4H4-mLim and C5H5-mLi m (m = 1, 2) were studied by means of density functional theory (DFT) calculation. For all the complexes considered, each bonded lithium atom can adsorb up to five H2 molecules with the mean binding energy of 0.59 eV/H2 molecule. The interactions can be attributed to the charge transfer from the H2 bonding orbitals to the Li 2s orbitals. The kinetic stability of these hydrogen-covered organolithium molecules is discussed in terms of the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The results indicate that these organiclithium structures can perhaps be used as building units for potential hydrogen storage materials.
The interactions of dihydrogen with lithium containing organic complexes C4H4-mLim and C5H5-mLi m (m = 1, 2) were studied by means of density functional theory (DFT) calculation. For all the complexes considered, each bonded lithium atom can adsorb up to five H2 molecules with the mean binding energy of 0.59 eV/H2 molecule. The interactions can be attributed to the charge transfer from the H2 bonding orbitals to the Li 2s orbitals. The kinetic stability of these hydrogen-covered organolithium molecules is discussed in terms of the energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The results indicate that these organiclithium structures can perhaps be used as building units for potential hydrogen storage materials.
基金
Acknowledgements H. Zhang acknowledges financial support from the National Natural Science Foundation of China (Grant Nos. 11074176 and 10976019) and the support from Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).