期刊文献+

小波瀑布型多重网格法在二维场域计算中的应用 被引量:1

The application of wavelet cascadic multigrid method in 2D field caculation
下载PDF
导出
摘要 考虑小波多分辨分析与多重网格的相似性,多重网格的延拓算子具有低通滤波器的作用。结合小波的多分辨分析的性质与瀑布型多重网格的优点提出了一种新的瀑布型多重网格算法。二维场域的数值算例表明相对于经典的瀑布型多重网格法新算法的效率有了一定的提高。 Considering the similarities between wavelet multi-resolution analysis and cascadic multigrid method,the prolongation of the multigrid method has low pass filter function.Combined with the properties of wavelet multi-resolution analysis and the advantages of cascadic multigrid method,a new cascadic multigrid method is presented in this paper.The numerical examples of 2D field indicate that the new cascadic multigrid method is more effective.
出处 《桂林电子科技大学学报》 2011年第3期238-241,共4页 Journal of Guilin University of Electronic Technology
基金 广西科学研究与技术开发计划项目(0731018)
关键词 瀑布型多重网格方法 小波多分辨分析 滤波器 cascadic multigrid method wavelet multi-resolution analysis low pass filter
  • 相关文献

参考文献7

  • 1DAUBECHIES L. Ten Lectures on Wavelets[M]. SLAM: Philadephia, 1992 : 311-369.
  • 2MALLAT S. A theory for multiresolution signal decomposi- tion: The wavelet represent-tation[J]. IEEE Trans PAMI-11, 1989, 11(7) :674-693.
  • 3STRANG G, NGUYEN T. Wavelets and Filter Banks[M]. Cambridge, MA: Wellesley, 1996 : 32-54.
  • 4LEON D. Wavelent Opeators applied to multigrid methods[J]. USA: UCLA Mathmatics Department, 2003,10 : 1-19.
  • 5王德华,周叔子.基于小波与多重网格方法的一类偏微分方程数值解[J].长沙电力学院学报(自然科学版),2006,21(3):62-65. 被引量:3
  • 6孙洁.基于多尺度分析的多重网格法[J].宁波大学学报(理工版),2008,21(4):538-541. 被引量:4
  • 7周建华,游佰强.工程电磁学基础[M].6版.北京:机械工程出版社,2006,9:460-461.

二级参考文献13

  • 1Daubechies I. Orthonormal basis of compactly supported wavelets[J]. Commun Pure Appl Math, 1988, 41:909- 996.
  • 2Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM J Math Anal, 1984, 15:723-736.
  • 3Mallat S G. Multiresolution approximations and wavelet orthonormal bases of L2eRT[J]. Trans Am Math Soc, 1989, 315: 69-87.
  • 4Brandt A. Multi-level adaptive solutions to boundary value problems[J]. Math Comp, 1977, 31:333-390.
  • 5Briggs W L, Henson V, McCormick S F. A multigrid tutorial[M], SIAM PA, 1999.
  • 6Briggs W L, Henson V. Wavelets and multigrid[J]. Siam J Sci Comput, 1993,14(2):506-510.
  • 7Thomas J. W. Numerical Partial Differential Equations, Finite Difference Methods[M]. New York : Springer-Verlag, 1995.
  • 8Daubechies I. Ten Lectures on Wavelets[M]. SIAM: Philadephia,1992.
  • 9Mallat S. A theory for multiresolution signal decomposition: The wavelet represen- ration [J]. IEEE Trans PAMI-11, 1989,11 (7) :674-693.
  • 10Strang G,Nguyen T. Wavelets and Filter Banks[M]. Cambridge,MA: Wellesley, 1996.

共引文献5

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部