期刊文献+

数据挖掘在高职学生综合素质监控中的应用

Data Mining in the Comprehensive Qualities of Vocational Students Monitor Application
下载PDF
导出
摘要 通过对已毕业学生综合信息的深入研究,构建出高职学生综合素质的贝叶斯网络预测模型,将概率统计应用到学生综合素质的分析和预测之中。利用该模型分析了高职学生的基本素质、英语水平和专业技能等因素与毕业时综合素质之间的内在关联,构建出毕业生综合素质贝叶斯网络结构图。该模型的应用,可以成功预测学生的当前状态对毕业时综合素质的影响,为高职学生在校期间各方面素质的提升提出合理建议,为高职院校的教育教学管理和改革提供决策支持。 Based on comprehensive information of graduated students,the article aims to construct Bayesian network prediction model of vocational students' comprehensive qualities,and apply the probability and statistics to the analysis and forecast of students' comprehensive qualities.With the model,the article analyzes connections between higher vocational students' basic quality,English level,professional skills and comprehensive quality when they graduate;it also constructs Bayesian network structure of graduates' comprehensive quality.The application of the model can successfully predict how the current state of the students affects their comprehensive quality,gives reasonable suggestions about how to improve their quality in all aspects,and provides support for education reform and teaching management in higher vocational colleges.
作者 张磊 范生万
出处 《宿州学院学报》 2011年第5期96-99,共4页 Journal of Suzhou University
基金 安徽省高等学校省级教学研究项目(2008jyxm571)
关键词 贝叶斯网络 关联分析 综合素质 分类和预测 bayesian network correlation analysis comprehensive quality classification and prediction
  • 相关文献

参考文献5

二级参考文献26

  • 1李旭升,郭耀煌.基于贝叶斯网络分类的个人信用评估模型[J].统计与决策,2006,22(20):13-15. 被引量:11
  • 2钟国祥,邱玉辉.采用贝叶斯网络建立一种智能学习环境学生代理模型的研究[J].计算机科学,2006,33(12):203-204. 被引量:8
  • 31.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 42.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 53.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 64.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 75.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 86.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 97.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61
  • 108.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部