期刊文献+

基于K-均值与蚁群混合聚类的图像分割 被引量:4

Image Segmentation Method Based on Combining Ant Colony Clustering with K-means Algorithm
下载PDF
导出
摘要 针对单一聚类算法在图像分割中容易陷入局部最优或有过分割现象,造成分割精确度低等问题,文章提出了基于K-均值聚类和蚁群聚类相结合的新算法。新算法先将K-均值算法作快速分类,根据K-均值分类结果更新蚂蚁各路径上的信息素,指导其他蚂蚁选择,以提高蚁群聚类算法的运行效率。实验结果证明,新算法在图像分割处理的精确度上较单一的K均值和蚁群聚类算法有很大提高。所以进一步表明该方法对于图像分割具有很好的通用性和有效性,是一种实用的、有前途的图像分割方法。 For a single clustering algorithm for image segmentation is easy to fall into local optimum or the phenomenon of over-segmentation,which will result in low accuracy problem of segmentation,We put forward a new clustering algorithm combining ant colony clustering with K-means algorithm.The new clustering algorithm is the first K-means algorithm for rapid classification,and according to classification results update the pheromones to guide the choosen of other ants,to improve the efficiency of ant colony clustering algorithm.Experimental results show that the new algorithm for image segmentation accuracy than a single K means clustering algorithm and the ant colony clustering algorithm has greatly improved.Therefore,further show that this method for image segmentation has good versatility and effectiveness,is a practical and promising method of image segmentation.
作者 江新姿 高尚
出处 《计算机与数字工程》 2011年第6期138-141,共4页 Computer & Digital Engineering
基金 江苏省高校自然科学基础研究项目(编号:08KJB520003)资助
关键词 蚁群聚类 K-均值聚类 图像分割 ant colony clustering K-means clustering image segmentation
  • 相关文献

参考文献4

  • 1Kanungo T, Mount D M, Netanyahu N S. An effcient K-means clustering algorithm: analysis and implemen tation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) : 881 ~892.
  • 2黄振华 吴诚一.模式识别[M].杭州:浙江大学出版社,1991.40-62.
  • 3杨欣斌,孙京诰,黄道.一种进化聚类学习新方法[J].计算机工程与应用,2003,39(15):60-62. 被引量:41
  • 4CHU S C, RODDICK J F, PAN JS. Ant colony system with communication strategies[J].Information Science, 2004,167(1-4):63-76.

二级参考文献6

共引文献45

同被引文献36

  • 1韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 2邢婷,宋振方.基于图分割的蚁群聚类算法[J].哈尔滨商业大学学报(自然科学版),2006,22(2):95-97. 被引量:2
  • 3江淑红,汪沁,张建秋,胡波.基于目标中心距离加权和图像特征识别的跟踪算法[J].电子学报,2006,34(7):1175-1180. 被引量:12
  • 4Bezdek J C.Pattern recognition with fuzzy objective function algorithm[M].New York:Plenum Press,1981:15-152.
  • 5Sinha N,Ramakrishnan A G.Automation of diffrtent boold count[C]//Pro.of Convergent technologies for the Asia Pacific Region,Bangalore,India,IEEE,2003:554-551.
  • 6Son L P,Bouzerdoum A,Chai D.A novel skin color model in YCbCr color image and its application to human face detection[C]//Proceedings of International Conference on Image Processing,New York,USA,IEEE,2003:14-17.
  • 7Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proc. of the 20st VLDB Con- ferenee, Santiago, Chile, 1994:487-499.
  • 8Park S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules [C]//Proeeed- ings of the 1995 ACM AIGMOD, 1995: 175-186.
  • 9Savasere A, Omiecinski E, Navathe S. An ecient algo- rithm for mining association rules in large database [C]//Proc of VLDB conf. SePtember, 1995:432-444.
  • 10HAN Jiawei, PEI Jian, YIN Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proeeed- ing of ACM-SIGMOD International Conference on Management of Data. New York: ACM Press,2000:1- 12.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部