期刊文献+

听觉中枢神经元对声信号的识别和处理 被引量:8

Sound Signal Recognition and Processing of Central Auditory Neurons
原文传递
导出
摘要 人类听觉的基本特性和机制与其他哺乳动物相似,因此,利用动物所作的听觉研究和获得的结果,有助于认识人类自身的听觉.围绕听觉中枢神经元对不同模式的声信号的识别和处理,简要综述了这方面的研究.声信号和声模式识别在听觉中枢对声信号的感受和加工中具有重要意义.听神经元作为声模式识别的结构和功能基础,对不同的声刺激模式产生不同反应,甚至是在同一声刺激模式下,改变其中的某个声参数,神经元的反应也会发生相应改变,而其反应的特性和机制均需要更多研究来解答.另外,声信号作为声信息的载体,不同的声信息寓于不同的声参数和声特征之中,研究发现,听觉中枢神经元存在相应的声信息甄别和选择的神经基础,能对动态变化的声频率、幅度和时程等进行反应和编码,并且,在不同种类动物上获得的研究结果极为相似,表明听觉中枢对不同声信号和声刺激模式的识别、分析和加工,具有共同性和普遍性. The basic properties and mechanisms of human hearing are similar to the mammals, therefore, the hearing researches performed on and the results obtained from the animals are very helpful to elucidate mechanisms of auditory processing of human. It was discusses briefly the studies and finding on the sound signal recognition and processing in central auditory neurons. Recognition of sound signal and pattern plays an important role in sound signal perception and processing of auditory center. The auditory neurons, as the base of sound signal and pattern recognition, can generate different responses to different sound patterns, even to fine sound parameters change of the same sound pattern. However, mechanism underlying sound signal recognition of auditory neurons is still not completely clear up to now. On the other hand, sound signal is the carrier of sound information, and different information may be carried by different sound components or parameters of sound signal. The previous studies have demonstrated that central auditory neurons have abilities to encode and discriminate the sound information embedded in different sound signals. Therefore, they can generate responses to sound frequency, amplitude, and duration in changing and encode these sound parameters. These similar results obtained from animals of different species also implied that auditory centers of the animals have intercommunity and universality in recognition, analyzing, and processing of sound signal.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2011年第6期499-505,共7页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金资助项目(31070971) 教育部科学技术重点基金资助项目(108096)~~
关键词 声信号识别 声信号处理 听觉中枢神经元 sound signal recognition, sound signal processing, central auditory neurons
  • 相关文献

参考文献60

  • 1Ulanovsky N, Moss C F. What the bat's voice tells the bat's brain. Proc Natl Acad Sci USA, 2008, 105(25): 8491-8498.
  • 2Litovsky R Y, Fligor B J, Tramo M J. Functional role of the human inferior collicuhs in binaural hearing. Hear Rcs, 2002, 165(1-2): 177-188.
  • 3Champoux F, Paiement P, Mercier C, et al. Auditory processing in a patient with a unilateral lesion of the inferior colliculus. Eur J Neurosci, 2007, 25(1): 291-297.
  • 4Kelly J B, Kavanagh G L. Sound localization atter unilateral lesion of inferior colliculus in the ferret (Mustela putorius). J Neurophysiol, 1994, 71(3): 1078-1087.
  • 5Shen J X, Feng A S, Xu Z M, et al. Ultrasonic frogs show hyperacute phonotaxis to femal courtship calls. Nature, 2008, 453(7197): 914-916.
  • 6Feng A S, Hall J C, Gooler D M. Neural basis of sound pattern recognition in anurans. Prog Neurobiol, 1990, 34(4): 313-329.
  • 7Griffin D R. Listening in The Dark. New York: Dover Publications, 1958:57-80.
  • 8Neuweiler G. Evolutionary aspects of bat echolocation. J Comp Physiol A, 2003, 189(4): 245-256.
  • 9唐佳,付子英,JEN PHILIP H.-S.,陈其才.恒频-调频蝙蝠下丘神经元的恢复周期决定声脉冲跟随率[J].生物化学与生物物理进展,2010,37(7):801-808. 被引量:3
  • 10Schuller G. Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of 'CF-FM' bat, Rhinolophus ferrumequinum. Exp Brain Res, 1979, 34(1): 117-132.

二级参考文献39

  • 1Razak KA, Richardson MD, Fuzessery ZM. Experience is required for the maintenance and refinement of FM sweep in the developing auditory cortex. Proc Natl Acad Sci USA 2008; 105: 4465-4470.
  • 2Luo H, Ni JT, Li ZH, Li XO, Zhang DR, Zeng FG, Chen L. Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proc Natl Acad Sci USA 2006; 103: 19558-19563.
  • 3Razak KA, Fuzessery ZM. Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat. J Neurophysiol 2006; 96: 1303-1319.
  • 4Voytenko SV, Galazyuk AV. Intracellular recording reveals temporal integration in inferior colliculus neurons of awake bats. J Neurophysiol 2007; 97: 1368-1378.
  • 5Koch U, Grothe B. Hyperpolarization-activated current (Ih) in the inferior colliculus: distribution and contribution to temporal processing. J Neurophysiol 2003; 90: 3679-3687.
  • 6Ricketts C, Mendelson JR, Anand B, English R. Response to time-varying stimuli in rat auditory cortex. Hear Res 1998; 123: 27-30.
  • 7Tian B, Rauschecher JP. Processing of frequency-modulated sounds in the cat's posterior auditory field. J Neurophysiol 1998; 79: 2629-2642.
  • 8Nelken I, Versnel H. Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. Eur J Neurosci 2000; 12: 549-562.
  • 9Tian B, Rauschecker JP. Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 2004; 92: 2993-3013.
  • 10Fuzessery ZM. Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus. J Neurophysiol 1994; 72: 1061-1079.

共引文献16

同被引文献163

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部