期刊文献+

一种基于直推式回归的移动跟踪算法

下载PDF
导出
摘要 移动定位问题受到业界,学术界的广泛关注。多径、多址干扰和非视距(NLOS)问题是影响定位精度的主要问题,尤其是NLOS问题。为了提高定位精度,有效地降低NLOS误差,将定位嵌入到机器学习框架内,本文提出了一种基于直推式回归的移动跟踪算法,此算法分两步来实现,首先使用基于直推式回归的定位方法得到节点位置的最初估计。然后基于博弈论实现节点的位置跟踪,从而降低位置跟踪误差。实验表明此方法能有效地降低NLOS误差,提高定位的精度。
出处 《广东科技》 2011年第10期33-35,共3页 Guangdong Science & Technology
  • 相关文献

参考文献7

  • 1段凯宇,张力军,高玲,乔加新,武凌.两种NLOS误差消除及TOA定位算法[J].信号处理,2008,24(4):565-568. 被引量:5
  • 2李静,刘琚.用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135. 被引量:39
  • 3Gezici S.,Kobayashi H.and Poor H.V.A new approach to mobile position tracking.In:Proc.of IEEE Sarnoff Symposium On Advances in Wired and Wireless Communications.Ewing,NJ,March 11-12,2003.204-207.
  • 4陈毅松,汪国平,董士海.基于支持向量机的渐进直推式分类学习算法[J].软件学报,2003,14(3):451-460. 被引量:88
  • 5Corinna Cortes,Mehryar Mohri.On Transduetive Regression.Neural Information Processing Systems (NIPS 2006).Volume to appear,Vancouver,Canada,MIT Press,2006.
  • 6Mukherjee S.,Osuna E.,et al.Nonlinear prediction of chaotic time series using support vector machines.In:Proc.of IEEE Neural Networks for Signal Processing Workshop.1997,511-520.
  • 7Ertel R.B.and Reed J.H.Angle and time of arrival statisties for circular and elliptical scattering models.IEEE J.Selected Areas in Communications,1999,17(11):1829-1840.

二级参考文献34

  • 1李静,刘琚.用卡尔曼滤波器消除TOA中NLOS误差的三种方法[J].通信学报,2005,26(1):130-135. 被引量:39
  • 2[1]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995.
  • 3[2]Stitson MO, Weston JAE, Gammerman A, Vovk V, Vapnik V. Theory of support vector machines. Technical Report, CSD-TR-96-17, Computational Intelligence Group, Royal Holloway: University of London, 1996.
  • 4[3]Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995,20:273~297.
  • 5[4]Vapnik V. Statistical Learning Theory. John Wiley and Sons, 1998.
  • 6[5]Gammerman A, Vapnik V, Vowk V. Learning by transduction. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Wisconsin, 1998. 148~156.
  • 7[6]Joachims T. Transductive inference for text classification using support vector machines. In: Proceedings of the 16th International Conference on Machine Learning (ICML). San Francisco: Morgan Kaufmann Publishers, 1999. 200~209.
  • 8[7]Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, ed. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. Pittsburgh, PA: ACM Press, 1992. 144~152.
  • 9[8]Burges CJC. Simplified support vector decision rules. In: Saitta L, ed. Proceedings of the 13th International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann Publishers, 1996. 71~77.
  • 10[9]Osuna E, Freund R, Girosi F. An improved training algorithm for support vector machines. In: Proceedings of the IEEE NNSP'97. Amelia Island, FL, 1997. 276~285.

共引文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部