期刊文献+

一种改进SURF算法的图像配准 被引量:13

Image Matching Based on Improved Speed-up Robust Features
下载PDF
导出
摘要 SURF(speed-up robust features,即加速健壮特征)算法是一种尺度不变、旋转不变且性能较好的算法,但其稳定性和时间复杂度不足,不稳定的特征点被检测出来,会导致多余的计算。为此,提出用信息量扩展SURF检测算子和分特征集匹配方法,提高算法性能和配准速度,即先检测周围Hessian值最大的特征点,再用SURF算法计算特征点的信息量,然后根据尺度分解特征集成亚集,再根据亚集匹配,最后根据RANSAC和最小二乘法配准。实验结果证明,改进算法的配准性能与SURF算法相当,配准速度比SURF算法更快。 SURF is a scale and in-plane rotation invariant detector and descriptor with better performance,but their stabilities and time complexity are not good enough and unstable features are often detected,which results in needless calculation.The method which extends the detector with information theory and divides the features into sub-collection is proposed to improve performance and matching speed of the algorithm.Firstly detects the maximum point of Hessian around,secondly calculates its information by SURF,then divides the features extracted from both the test and the model object image into several sub-collection,finally the mapping relationship between images is acquired using RANSAC and least squares techniques.The experimental results show that the improved algorithm has the same registration performance but faster speed than SURF.
出处 《湖南工业大学学报》 2011年第2期95-99,共5页 Journal of Hunan University of Technology
基金 湖南省自然科学基金资助项目(09JJ3115)
关键词 SURF算法 改进SURF算法 信息量 图像配准 SURF algorithm improved SURF algorithm information quantity image registration
  • 相关文献

参考文献11

  • 1Zitová Barbara,Husser Jan.Image Registration Methods:A Survey[J].Image and Vision Computing,2003,21(11):977-1000.
  • 2Li Jing,Allinson Nigel M.A Comprehensive Review of Current Local Features for Computer Vision[J].Neumcomputing,2008,71(10/11/12):1771-1787.
  • 3Mikolajczyk K,Tuytelaars T,Schmid C,et al.A Comparison of Affine Region Detectors[J].International Journal of Computer Vision,2005,65(1/2):43-72.
  • 4Mikolajczyk K,Schmid C.APerformance Evaluation of Local Descriptors[J].IEEE.Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 5Valgren Cbristoffer,Lilienthal Achim.SIFT.SURF and Seasons:Long-Term Outdoor Localization Using Local Features[EB/OL].[2010-08一IO].http://www.aass.oru.sa Research/Learning/publications/Valgren_and_Lilienthal 2007-ECMR07-SIFT_SURF_and_Seasons.html.
  • 6Bay Herbert,Tuytelaars Tinne,Gool Luc Van.SURF:Speeded Up Robust Features[J].Computer Vision and Image Understanding,2008,1 10(3):346-359.
  • 7孙文昌,宋建社,杨檬,张琳.基于熵和独特性的角点提取算法[J].计算机应用,2009,29(B12):225-227. 被引量:5
  • 8郑明玲,刘衡竹.遥感图像配准中特征点选择的高性能算法研究及其实现[J].计算机学报,2004,27(9):1284-1289. 被引量:17
  • 9时永刚,邹谋炎.图像配准中统计型相似性测度的比较与分析[J].计算机学报,2004,27(9):1278-1283. 被引量:16
  • 10Fischler Martin A.Bolles Robert C.Random Sample Consensus:AParadigm for Model Fitting with Appfication to Image Analysis and Automated Cartography[J].Communications of the ACM,1981,24(6):381-395.

二级参考文献28

  • 1赵开春,褚金奎.一种新的快速鲁棒性角点检测算法[J].计算机工程,2005,31(23):159-161. 被引量:7
  • 2赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:85
  • 3王玉珠,杨丹,张小洪.基于B样条的改进型Harris角点检测算法[J].计算机应用研究,2007,24(2):192-193. 被引量:22
  • 4李伟,沈振康,李飚.基于局部曲率函数的角点检测[J].计算机工程与设计,2007,28(11):2595-2596. 被引量:6
  • 5Shannon C.E.. The mathematical theory of communication. The Bell System Technical Journal, 1948, 27(7): 379-423, 27(10): 623-656
  • 6Viola P., Wells W.. Alignment by maximization of mutual information. In: Proceedings of the 5th International Conference on Computer Vision, Boston, MA, 1995, 16~23
  • 7Collignon A., Maes F., Vandermeulen D. et al.. Automated multimodality image registration using information theory. In: Proceedings of the Information Processing in Medical Imaging Conference, Dordrecht, 1995, 263~274
  • 8Pluim P.W., Maintz J.B., Max A.. Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging, 2003, 22(8): 986~1004
  • 9Maes F., Collignon A., Vandermeulen D. et al.. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 1997, 16(2): 187~198
  • 10Studholme C., Hill D.L.G., Hawkes D.J.. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 1999, 32(1): 71~86

共引文献35

同被引文献129

引证文献13

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部