期刊文献+

基于非抽样提升小波包及奇异值分解的液阀故障诊断 被引量:7

Diagnosis of Liquid Valve Based on Undecimated Lifting Scheme Packet and Singular Value Decomposition
下载PDF
导出
摘要 针对液阀故障微弱信号特征识别问题,提出一种结合非抽样提升小波包(Undecimated lifting scheme packet,ULSP)及奇异值分解(Singular value decomposition,SVD)的降噪方法。确定信号的分解层次及各层初始算子的长度后,通过拉格朗日插值公式算出初始算子,用非抽样算法对原始信号进行分解。对最后一层各频带信号进行奇异值分解降噪处理,根据奇异熵增量曲线确定降噪阶次。用非抽样提升小波包的重构算法对信号进行重构,最终获得降噪后的信号。对降噪后的信号再进行非抽样提升小波包分解,以提取故障特征。对仿真信号的降噪表明,所提方法降噪获得较高的信噪比及较低的均方差,且能保留信号中应有的高频成分。提出的方法成功提取某往复式注水泵排水阀弹簧失效的微弱故障特征。 Aiming at the extraction of failure character signal for liquid valve,a novel method to combine undecimated lifting scheme packet(ULSP) with singular value decomposition(SVD) is developed.Initial operators are calculated by using Lagrange interpolation formula after determining decomposition level and the lengths of initial operators,and then the original signal is decomposed by using undecimated algorithm.All frequency bands signals of the last layer are denoised by using SVD thresholding,a reasonable order for noise reduction is selected according to the singular entropy of singular spectrum.Then signal is reconstructed by using reconstruction algorithm,and the denoised signal is decomposed by using ULSP again in order to extract fault feature.Simulative signal and engineering results confirm the better noise reduction of ULSP-SVD.The weak fault signal of the spring on the drain valve of a reciprocating water-flood pump is extracted from the strong vibration background.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第9期72-77,共6页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2008AA06Z209) 中国石油天然气集团公司创新基金(07E1005)资助项目
关键词 非抽样提升小波包 奇异值分解 液阀 故障诊断 Undecimated lifting scheme packet Singular value decomposition Liquid valve Fault diagnosis
  • 相关文献

参考文献16

二级参考文献106

共引文献275

同被引文献54

  • 1蒋东方,陈明.一种实时小波降噪算法[J].仪器仪表学报,2004,25(6):781-783. 被引量:33
  • 2舒服华.运用粗糙集与小波神经网络诊断往复泵故障[J].石油机械,2006,34(4):38-41. 被引量:2
  • 3陈升来,黄廉卿,郭静寰.基于整型提升小波变换的图像处理及DSP实现[J].光学精密工程,2006,14(3):498-502. 被引量:25
  • 4胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 5Su S F,Lin G B,Hsu Y T. A high precision global prediction ap-proach based on local prediction approachs. IEEE Transactions onSystems,Man and Cybernetics, Part C, 2002;32(4) ; 416-425.
  • 6Swledens W. The lifting scheme : a construction of second generationwavelets. SIAMJ Math Anal, 1997 ; 29 (2) : 511—546.
  • 7Jiang Hongkai, He Zhengjia, Duan Chendong. Gearbox fault diagno-sis using adaptive redundant liftingscherae. Meehan -ical Systems andSignal Processing, 2006 ; 20(B) : 1992—2006.
  • 8Shin K,Hammond J K,White P R. Iterative SVD method for noisereduction of low-dimension chaotic time series. Mechanical Systemsand Signal Processing, 1999 ; 13 ( 1 ) : 115—124.
  • 9JOHNSON M T, POVINELLI R J. Generalized phase space projection for nonlinear noise reduction[J]. Physica D, 2005, 201(3-4): 306-317.
  • 10BENESTY J, CHEN J, HUANG Y. Speech enhancement in the Karhunen-Lo~ve expansion domain[M]. San Rafael, California: Morgan & Claypool Publishers, 2011.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部