期刊文献+

裂纹检测中的匹配滤波器构造方法研究

Research on Structure of Matched Filter in Crack Detection
下载PDF
导出
摘要 匹配滤波技术在基于数字图像处理的裂纹检测领域有着广泛的应用前景。在使用匹配滤波方法对裂纹X光图像进行预处理滤波时,匹配滤波器的选择是否合适直接影响到滤波效果的好坏。本文论证匹配滤波在裂纹图像检测中的优越性,对裂纹检测中所使用的匹配滤波器矩阵的构造方法进行研究,提出构造匹配滤波器时关于滤波器矩阵形态、尺寸和非零元素宽度的3个原则。通过仿真实验,将滤波后裂纹图像的边缘重绘于原始图像上,从而验证本文提出原则的正确性。 The matched filtering has great prospect in the field of crack detection based on digital image processing.The choose of the filter is very important for the result of the matched filtering.In this paper,a demonstration about the superiority of the matched filter used in crack detection is given first of all,and then three principles are given about the method for constructing the matched filter using in crack detection,including the principles of the form,the dimension and the width of the non-zero element of the filter matrix.At last,the principles are testified by simulation experiment,and the crack image edges matched filtering is drew on the original image.
出处 《计算机与现代化》 2011年第6期36-39,82,共5页 Computer and Modernization
关键词 裂纹 匹配滤波器 原则 crack matched filter principles
  • 相关文献

参考文献8

二级参考文献76

  • 1李葆青,文山.基于二维小波的粒型图像边缘检测[J].六盘水师范高等专科学校学报,2004,16(6):5-8. 被引量:2
  • 2郭显久.一种新的基于小波变换的边缘检测算法[J].大连水产学院学报,2005,20(2):158-162. 被引量:8
  • 3钟江帆,张铁强,冯义,麻永杰.CCD检测激光束偏转方位的研究和应用[J].激光杂志,1996,17(4):190-192. 被引量:3
  • 4Winn J.Variational message passing and its applications[D].England:University of Cambridge,2003.
  • 5Treisman A.Gelade G.A featureintcgration theory of attention[J].Cognitive Psychology.1980.12(1):97-136.
  • 6Olira A,Torralba A.Modeling the shape of the scene:A holistic representation of the spatial envelope[J].International Journal on Computer Vision,2001,42 (3):145-175.
  • 7Vogel J,Schiele B.Natural scene retrieval based on a semantic modeling step[C] //Proc of the ACM Int Conf on Image and Video Retrieval.New York:ACM,2004:207-215.
  • 8Blei D,Ng A,Jordan M.Latent Dirichlet allocation[J].Journal of Machine Learning Re,arch.2003.3 (5):993-1022.
  • 9Hofmann T.Unsupervised learning by probabilistie latent semantic analysis[J].Machine l.earning.2001,42(1):177-196.
  • 10Li Feifei,Perona P.A Bayesian hierarchical model for learning natural scene categories[C] //Proc of the IEEE Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2005:524-531.

共引文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部