期刊文献+

稀土掺杂双组分整体式低温脱硝催化剂的制备与性能(英文) 被引量:7

Preparation and Performance of Ceria Doped Two-Component deNO_x Monolithic Catalysts at Low Temperature
原文传递
导出
摘要 采用低温共溶在650~850℃内烧成制备(V-W-Ti-O)x(Cu-Al-O)1-x(Ce-O)0.03,(x=0.9,0.8)双组分整体式低温脱硝催化剂。研究烧成温度对整体式催化剂的机械强度、开气孔率、吸水率及体积密度的影响,采用X射线衍射(XRD)、扫描电镜(SEM)、能谱分析(EDS)及傅里叶红外(FT-IR)等表征手段,分别考察催化剂的晶型、表面形貌和特征孔,定性、定量地分析催化剂的成分和官能团结构,进一步研究反应温度对脱硝催化活性的影响。结果表明,催化剂微观多孔、晶粒分散均匀,晶型复杂(包括TiO2,TiVO4,WV2O6,CeVO4,Cu2V2O7,AlV2O4,CuAlMnO4和Cu1.9V12O29等)。700℃保温2h优化制备的(V-W-Ti-O)0.8(Cu-Al-O)0.2(Ce-O)0.03催化剂,机械抗弯强度达到45.5MPa,催化活性窗口为100~200℃,反应温度为150℃时,催化剂的脱硝活性达到75.9%。 The(V-W-Ti-O)x(Cu-Al-O)1-x(Ce-O)0.03,(x=0.9,0.8) deNOx monolithic catalysts were prepared by low temperature co-sintering(LTC) within the sintering temperature range of 650-850 °C.The effects of sintering temperature on the mechanical strength,porosity and water absorption of the monolithic catalysts and the effect of reaction temperature on catalytic activity were investigated.The microscopic structure of the catalysts was analyzed by X-ray diffraction(XRD),scanning electron microscopy(SEM) and fourier infrared spectroscopic analysis(FT-IR).Results show that catalysts are porous in micro-structure and grains are distributed uniformly.The crystallographic forms are mainly TiO2(rutile),TiVO4,WV2O6,CeVO4,Cu2V2O7,AlV2O4,CuAlMnO4 and Cu1.9V12O29.For the reforming monolithic catalysts sintered at 700 °C for 2 h,the two-component catalysts exhibit high catalytic activities in the low temperature range of 100-200 °C and their bending strength reaches to 45.5 MPa.The NO conversion of(V-W-Ti-O)0.8(Cu-Al-O)0.2(Ce-O)0.03 monolithic catalyst corresponds to 75.9% at reactor temperature of 150 °C.
机构地区 南京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第6期967-972,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China (50872052) PhD Student Innovation Foundation of Jiangsu Province
关键词 脱硝 整体式催化剂 氧化铈 催化活性 抗弯强度 deNOx monolithic catalyst Cerium oxide catalytic activity bending strength
  • 相关文献

参考文献18

  • 1In-Young Lee, Dong-Wha Kim, Jung-Bin Lee et al. J Chem Eng [J], 2002, 90(3): 267.
  • 2Iwamoto M, Takenaka T, Matsukami K et al. Appl Catal[J], 1985, 16(2): 153.
  • 3Ohman L O, Ganemi B, Bjornbom E et al. Mater Chem Phy[J], 2002, 73(2-3): 263.
  • 4Chung S Y, Oh S H, Kim M H et al. Catal Today[J], 1999, 54(4): 521.
  • 5Hadjiivanov K, Klissurski D, Ramis G et al. Appl Catal B[J], 1996, 7(3-4): 251.
  • 6Farrauto R J, Heck R M. Catal Today[J], 2000, 55(1-2): 179.
  • 7Liu Qingya, Liu Zhenyu, Fan Jian. Chin J Catal[J], 2005, 26(1): 59.
  • 8Kohler K, Engweiler J, Baiker A. J Molecular Catal A:Chem[J], 2000, 162(1-2): 423.
  • 9Reiche M A, Hug P, Baiker A. J Catal[J], 2000, 192(2): 400.
  • 10Wang Ming, Su Li, Yu Shouming et al. J Molecular Catal (Chin)[J], 1992, 6(2): 136.

同被引文献68

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部