期刊文献+

基于小波变换和邻域特征的多聚焦图像融合算法 被引量:21

A New and Effective Multi-Focus Image Fusion Algorithm Based on Wavelet Transforms and Neighborhood Features
下载PDF
导出
摘要 提出了一种基于小波变换和邻域特征的多聚焦图像融合算法。该算法首先采用小波变换对源图像进行多尺度分解,得到低频和高频子图像;然后对低频子图像采用基于邻域归一化梯度的方法得到低频融合系数,对高频子图像采用基于邻域方差的方法得到高频融合系数;最后进行小波重构得到融合图像。采用均方根误差、信息熵以及峰值信噪比等评价标准,将该算法与传统融合方法的融合效果进行了比较。实验结果表明,该算法所得融合图像的效果和质量均有明显提高。 Aim. The introduction of the full paper reviews a number of papers in the open literature and then proposes what we believe to be a new and relatively more effective algorithm, which is explained in sections 1 and 2. The core of section 2 consists of: ( 1 ) we use wavelet transforms to perform the multi-scale decomposition of source images, thus obtaining their low-frequency and high-frequency sub-images respectively; (2) we apply the neigh- borhood normalized gradients of pixels to fusing the low-frequency sub-images so as to obtain their low-frequency fu- sion coefficients and apply the neighborhood variances of pixels to fusing high-frequency sub-images so as to obtain their high-frequency fusion coefficients; (3) we use the inverse wavelet transforms to perform the wavelet reconstruction of the fused sub-images, as shown by the block diagram in Fig. 1, thus obtaining their fused image. Section 3 did two things to compare the fusion effects of different image fusion algorithms : ( 1 ) we did experiments on the fusion of two grey images and two color images respectively; the experimental results, given in Figs. 2 and 3, and their analysis show preliminarily that our multi-focus image fusion algorithm can effectively improve the quality of fused image in terms of its definition and contrast; (2) we performed the objective evaluation of the performance of our image fusion algorithm; the evaluation results, given in Table 1, and their analysis also show preliminarily that our image fusion algorithm can reduce the number of decomposition layers and the computation load, thus being superior to other algorithms in terms of root mean squares error, entropy and peak signal to noise ratio.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第3期454-459,共6页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60802084)资助
关键词 图像融合 小波变换 多聚焦图像 邻域归一化梯度 邻域方差 image processing, wavelet transforms, algorithms, signal to noise ratio, feature extraction, image fusion, multi-focus image, neighborhood normalized gradient, neighborhood feature
  • 相关文献

参考文献12

  • 1Eltoukhy H A, Kavusi S. A Computationally Efficient Algorithm for Muhi-Focus Image Reconstruction. Proceedings of SPIE Electronic Imaging, 2003, 332 - 341.
  • 2Li S T, Yang B. Muhifocus Image Fusion Using Region Segmentation and Spatial Frequency. Image and Vision Computing, 2008, 26(7): 971 -979.
  • 3Li S T, Kwok J T, Wang Y N. Combination of Images with Diverse Focuses Using the Spatial Frequency. Information Fusion, 2001, 2(3) : 169 - 176.
  • 4Liu Z, Tsukada K, Hanasaki K, Ho Y K, Dai Y P. Image Fusion by Using Steerable Pyramid. Pattern Recognition Letters, 2001, 22(9) : 929 -939.
  • 5Toet A. Image Fusion by A Ration of Low-Pass Pyramidal. Pattern Recognition Letters, 1989, 9(4) : 245 -253.
  • 6Pajares G, Cruz J. A Wavelet-Based Image Fusion Tutorial. Pattern Recognition, 2004, 37(9) : 1855 - 1872.
  • 7De I, Chanda B. A Simple and Efficient Algorithm for Muhifocus Image Fusion Using Morphological Wavelets. Signal Process- ing, 2006, 86 (5) : 924 - 936.
  • 8Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation. IEEE Trans. on Image Processing, 2005, 14(2): 2091 -2106.
  • 9李敏,张小英,毛捷.基于邻域方差加权平均的小波图像融合[J].国外电子测量技术,2008,27(1):5-6. 被引量:10
  • 10楚恒,李杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J].光电工程,2005,32(8):59-63. 被引量:28

二级参考文献25

  • 1杨志,毛士艺,陈炜.一种新的基于小波对比度的图像融合算法[J].系统工程与电子技术,2005,27(2):209-211. 被引量:15
  • 2刘斌,彭嘉雄.基于分块的小波多聚焦图像融合方法[J].计算机工程,2005,31(5):41-42. 被引量:13
  • 3Zhong ZHANG,R S BLUM. A Categorization of Multiscale-Decomposition-Based Image Fusion Schemes with a Performance Study for a Digital Camera Application [J]. Proc. of IEEE,1999,87(8):1315-1326.
  • 4P J BURT,R J KOLCZYNSKI. Enhanced Image Capture Through Fusion [A]. Proceedings of the Fourth International Conference on Computer Vision [C]. Los Alamitos:IEEE Computer Society Press,1993. 173-182.
  • 5Hill P, Canagarajah N, Bull D. Image fusion using complex wavelets[ A] .British Machine Vision Conference[ C]. Cardiff,2002.487 - 496.
  • 6Burt P J, Adelson E H. The laplacian pyramid as a compact image code[ J]. IEEE Transactions on Communications, 1983,31(4):532-540.
  • 7Eslami R,Radha H.Wavelet based contourlet transform and it's application to image coding[ A]. IEEE International Conference on Image Processing[ C]. Singapore,2004,3189 - 3192.
  • 8Eslami R, Radha H. The contourlet transform for image denoising using cycle spinning[ A]. Asilomar Conference on Sigrials, Systems, and Computers[ C ]. Pacific Grove, USA, 2003.1982- 1986.
  • 9Do M N,Vetterli M.Contourlet:A directional multireslution image representation[A].Proc of IEEE Intemational Conference on Image Processing[C].Rochester,NY,2002.357-360.
  • 10Piella G.A general framework for multiresoufion image fusion:from pixels to regions[ J ]. Information Fusion, 2003,4 (4) : 259- 280.

共引文献77

同被引文献170

引证文献21

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部