期刊文献+

齿轮随机参数系统非线性振动响应可靠性分析 被引量:6

Reliability Analysis of Nonlinear Vibration Response for Gear System with Stochastic Parameters
下载PDF
导出
摘要 以单位振动周期内随机振幅超限作为失效准则,定义了随机参数结构系统的振动响应可靠度.将非线性振动数值求解与动力可靠性理论结合起来,利用随机过程中的水平跨越分析方法推导了齿轮非线性系统振动响应可靠度的计算公式,并计算了齿轮间隙非线性随机参数系统的振动响应可靠度.研究表明,该方法对复杂的齿轮非线性随机参数系统的振动响应可靠度的计算是有效的.齿轮间隙非线性振动响应为周期振动时,随机参数系统的振幅变化不大.随着频率比的变化,当响应进入混沌振动状态时,随机参数系统在一个周期内极易产生失效振幅,振动可靠度较低.因此,设计时应避开混沌振动区域. The reliability of nonlinear vibration response for gear system with stochastic parameters is defined with the failure criteria that the random amplitude exceeds the prescribed value in a vibration cycle.With a combination of the numerical solution of nonlinear vibration and dynamic reliability theory,this paper deduces the nonlinear vibration response reliability formula by up-crossing approach for gear system,and calculates the reliability of a gear system with stochastic parameters.The study shows that the approach is efficient to calculate such vibration response reliability of complex gear system.The amplitude of the system changes little when the nonlinear vibration response is periodic.However,when the response turns to be chaotic vibration due to the change of frequency ratio,the system is easy to fail within one amplitude period.As a result,the reliability is very low.The chaotic vibration thus needs to be avoided in the design.
作者 孙志礼 袁哲
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期838-842,共5页 Journal of Northeastern University(Natural Science)
基金 国家科技重大专项(2009ZX04014-014)
关键词 齿轮 非线性振动 随机过程 随机参数 可靠性 gear nonlinear vibration stochastic process stochastic parameters reliability
  • 相关文献

参考文献8

  • 1Huang K J, Liu T S. Dynamic analysis of a spur gear by the dynamic stiffness method [ J] . Journal of Sound and Vibration, 2000,234(2):311- 329.
  • 2Bonori G, Barbieri M, Pellicano F. Optimum profile modifications of spur gears by means of genetic algorithms[J].Journal of Sound and Vibration, 2008, 313:603 -616.
  • 3Theodossiades S. Non-linear dynamics of gear-pair systems with periodic stiffness and backlash [J].Journal of Sounal and Vibration, 2000,229(2) :287 -310.
  • 4Shyyaba A, Kahraman A. Non-linear dynamic analysis of a multi-mesh gear train using multi-tern1 harmonic balance method: sub-harmonic motions [ J ]. Journal of Sound and Vibration, 2005,279:417 -451.
  • 5Beck A T, Melchers R E. On the ensemble crossing rate approach to time variant reliability analysis of uncertain structures[J ]. Probabilistic Engineering Mechanics, 2004, 19:9- 19.
  • 6Hosseini S A A, Khadem S E. Vibration and reliability of a rotating beam with random properties under random excitation [J]. Mechanical Science, 2007,49:1377- 1388.
  • 7Haym B, Seon M H. Probability models in engineering and scienceIM]. Boca Raton: CRC Press, 2005.
  • 8Yuan Z, Sun Z L. Study on numerical identification of the nonlinear chaotic vibration of a gear pair [ C ]//Proceeding of 15th ISSAT International Conference on Reliability and Quality in Design. San Francisco, 2009 : 234- 237.

同被引文献157

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部