期刊文献+

基于核化图嵌入的最佳鉴别分析与人脸识别 被引量:27

Optimal Discriminant Analysis Based on Kernel Extension of Graph Embedding and Face Recognition
下载PDF
导出
摘要 将压缩映射和同构映射引入核化图嵌入框架(kernel extension of graph embedding,简称KGE),从理论上证明了KGE框架内的各种核算法其实质是KPCA(kernel principal component analysis)+LGE(linear extension of graph embedding,简称LGE)框架内的线性降维算法,并且基于所给出的理论框架提出了一种综合利用零空间和非零空间鉴别信息的组合方法.任何一种可以用核化图嵌入框架描述的核算法,都可以有相应的组合方法.在ORL,Yale,FERET和PIE人脸数据库上验证了所提出的理论和方法的有效性. By making use of compressive mapping and isomorphic mapping in the kernel extension of graph embedding, this paper proves that the essence of kernel extension of graph embedding (KGE) is KPCA (kernel principal component analysis) plus all kinds of linear dimension reduction approaches interpreted in a linear extension of graph embedding (LGE). Based on the theory framework, a combined framework, which takes advantage of the discriminant feature in both null and non-null spaces, is developed. Furthermore, every kernel dimensionality reduction algorithm has its own corresponding combined algorithm. The experimental results from ORL, Yale, FERET and PIE face databases show that the proposed methods are better than the original methods in terms of recognition rate.
出处 《软件学报》 EI CSCD 北大核心 2011年第7期1561-1570,共10页 Journal of Software
基金 国家自然科学基金(60632050 60873151 60973098) 国家高技术研究发展计划(863)(2006AA01Z119)
关键词 核化图嵌入 最优鉴别矢量 核主成分分析 特征抽取 人脸识别 kernel extension of graph embedding optimal discriminant vector kernel principal componentanalysis (KPCA) feature extraction face recognition
  • 相关文献

参考文献14

  • 1王晓明,王士同.广义的监督局部保留投影算法[J].电子与信息学报,2009,31(8):1840-1845. 被引量:7
  • 2史卫亚,郭跃飞,薛向阳.一种解决大规模数据集问题的核主成分分析算法[J].软件学报,2009,20(8):2153-2159. 被引量:21
  • 3申中华,潘永惠,王士同.有监督的局部保留投影降维算法[J].模式识别与人工智能,2008,21(2):233-239. 被引量:30
  • 4Yang J,Zhang D,Yang JY,Niu B.Globally maximizing,locally minimizing:Unsupervised discriminant projection with applications to face and palm biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2007
  • 5Deng WH,Hu JN,Guo J,Zhang HG,Zhang C.Comments on"Globally maximizing,locally minimizing:Unsuperviseddiscriminant projection with application to face and palm biometrics". IEEE Transactions on Pattern Analysis and Machine Intelligence . 2008
  • 6Cai D,He XF,Hu YX,Han JW,Huang T.Learning a spatially smooth subspace for face recognition. Proc.of the IEEEComputer Society Conf.on Computer Vision and Pattern Recognition(CVPR) . 2007
  • 7Xiaofei He,Deng Cai,Shuicheng Yan,Hong-Jiang Zhang.Neighborhood Preserving Embedding. IEEE International Conference on Computer Vision (ICCV) . 2005
  • 8Belhumeur PN,Hespanha JP,Kriegman DJ.Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997
  • 9He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2005
  • 10Shuicheng Yan,Dong Xu,Benyu Zhang,et al.Graph embedding and extensions:a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2007

二级参考文献28

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2宋枫溪,高秀梅,刘树海,杨静宇.统计模式识别中的维数削减与低损降维[J].计算机学报,2005,28(11):1915-1922. 被引量:44
  • 3He X and Niyogi P.Locality preserving projections[C].Proc.Conf.Advances in Neural Information Processing Systems,Vancouver,Canada,2003:585-591.
  • 4Kokiopoulou E and Saad Y.Orthogonal neighborhood preserving projections:A projection-based dimensionality reduction technique[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(12):2143-2156.
  • 5Tao Q,Wu G W,and Wang J.The theoretical analysis of FDA and applications[J].Pattern Recognition,2006,39(6):1199-1204.
  • 6Liu J,Chen S C,and Tan X Y.A study on three linear discriminant analysis based methods in small sample size problem.Pattern Recognition,2008,41(1):102-116.
  • 7Zhuang X S and Dai D Q.Improved discriminate analysis for high-dimensional data and its application to face recognition[J].Pattern Recognition,2007,40(5):1570-1578.
  • 8Cai D,He X,and Han J,et al..Orthogonal laplacianfaces for face recognition[J].IEEE Transactions on Image Processing,2006,15(11):3608-3614.
  • 9Turk M and Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 10Masashi Sugiyama.Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J].Journal of Machine Learning Research,2007,8(5):1027-1061.

共引文献53

同被引文献272

  • 1朱虹.我国智慧城市发展现状及标准化建设思考[J].标准科学,2013(11):10-13. 被引量:6
  • 2孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:30
  • 3张宝昌,陈熙霖,山世光,高文.基于支持向量的Kernel判别分析[J].计算机学报,2006,29(12):2143-2150. 被引量:10
  • 4闫娟,程武山,孙鑫.人脸识别的技术研究与发展概况[J].电视技术,2006,30(12):81-84. 被引量:20
  • 5Duda R O, Hart P E, Stork D G. Pattem Classification[M]. New York, USA: John Wiley & Sons, 2000.
  • 6Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analy- sis[M]. Cambridge, UK: Cambridge University Press, 2004.
  • 7Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph Embedding and Extensions: A General Framework for Dimensionality Reduction[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(1 ): 40-51.
  • 8He Xiaofei, Niyogi E Locality Preserving Projections[C]//Proc. of. NIPS'03. British Columbia, Canada: [s. n.], 2003.
  • 9Suykens J A K, Vandewalle J. Least Squares Support Vector Ma- chine Classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 10Sindhwani V, Niyogi P, Belkin M. Beyond the Point Cloud: From Transductive to Semi-supervised Leaming[C]//Proc. of the 22nd International Conference on Machine Learning. Bonn, Germany: [s. n.], 2005.

引证文献27

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部