期刊文献+

基于“优化肿瘤标志群”建立的人工神经网络模型对肺癌辅助诊断的作用 被引量:4

下载PDF
导出
摘要 0引言肺癌是目前世界范围内死亡率最高的肿瘤,并以每年新增男性患者960 000例、女性患者390 000例的速度递增,且预后差,5年生存率仅为5%~10%[1]。早诊断早治疗是降低其死亡率的关键。目前肿瘤标志(tumor marker,TM)联合人工神经网络(Artificial neural networks,ANN)辅助诊断癌症,已成为研究的热点,并获得阶段性的结果。
出处 《肿瘤防治研究》 CAS CSCD 北大核心 2011年第6期709-711,共3页 Cancer Research on Prevention and Treatment
基金 国家自然科学基金资助项目(30972457)
  • 相关文献

参考文献8

  • 1Boyle P, Levin B. World cancer report 2008 [M]. World Health Organization international agency for research on canc- er, 2008:390.
  • 2余捷凯,杨美琴,姜铁军,郑树.血清肿瘤标志物优化组合人工神经网络模型在大肠癌诊断中的应用[J].浙江大学学报(医学版),2004,33(5):407-410. 被引量:22
  • 3Chiu JS, Wang YF, Su YC, et al. Artificial neural network to predict skeletal metastasis in patients with prostate cancer [J]. J Med Syst, 2009, 33(2) :91-100.
  • 4吴拥军,吴逸明,张振中,屈凌波,相秉仁.基于人工神经网络的“最优标志物群”在肺癌诊断中的应用研究[J].实用肿瘤杂志,2002,17(5):317-320. 被引量:11
  • 5Tanoue LT, Detterbeck FC. New TNM classification for non- small-cell lung cancer[J]. Expert Rev Anticancer Ther,2009, 9(4) :413-423.
  • 6Ozkan O, Yildiz M, Bilgin S, et al. Measuring the sympathetic skin response on body and using as diagnosis-purposed for lung cancer patients by artificial neural networks[J]. J Med Syst, 2010,34(3) :407-412.
  • 7Er O, Temurtas F, Tanrikulu AC. Tuberculosis disease diagno- sis using artificial neural networks[J]. J Med Syst, 2010, 34 (3) :299-302.
  • 8Patel J L,Goyal RK. Applications of artificial neural networks in medical science [J]. Curr Clin Pharmacol, 2007, 2(3) :217- 226.

二级参考文献2

共引文献31

同被引文献35

  • 1Siegel R,Ward E,Brawley O. Cancer statistics,2011:the impact of eliminating socioeconomic and racial dispari-ties on premature cancer deaths[J].{H}CA-A Cancer Journal for Clinicians,2011,(4):212.
  • 2Flores-Fernández JM,Herrera-López EJ,Sánchez-Llamas F. Development of an optimized multi-biomarker panel for the detection of lung cancer based on principal component analy-sis and artificial neural network modeling[J].Expert Syst Ap-pl,2012,(12):10851.
  • 3周建光;杨梅.多肿瘤标志物蛋白芯片检测在肿瘤诊断中的临床应用及研究进展[J]{H}中国医学检验杂志,2010(3):165.
  • 4Chiu JS,Wang YF,Su YC. Artificial neural network to predict skeletal metastasis in patients with prostate canc-er[J].{H}Journal of Medical Systems,2009,(2):91.
  • 5Kim J,Hwang M,Jeong DH. Technology trends analy-sis and forecasting application based on decision tree and statistical feature analysis[J].{H}EXPERT SYSTEMS WITH APPLICATIONS,2012,(16):12618.
  • 6薛薇;陈欢歌.Clementine数据挖掘方法及应用[M]{H}北京:电子工业出版社,2010.
  • 7Zhang Y, Yang D,Weng L,et al. Early lung cancer diagnosis by biosensors[J].Int J Mol Sci,2013,14(8) :15479.
  • 8Brothers JF, Hijazi K, Mascaux C, et al. Bridging the clini- cal gaps : genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the post-National Lung Screening Trial era[J]. BMC Med ,2013.11 : 168.
  • 9Vallejo M, Isaza CV, Lopez JD. Artificial Neura! Networks as an alternative to traditional fall detection methods [ J ]. Conf Proc IEEE Eng Med Biol Soc,2013,2013:1648.
  • 10张谦,单岩,王家祥,范应中,秦攀,杨林,郑树.基于人工神经网络的血清蛋白质指纹图谱模型在先天性巨结肠患儿诊断中的应用[J].实用儿科临床杂志,2008,23(17):1382-1384. 被引量:1

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部