期刊文献+

最优控制问题的一个超收敛分析

Super-convergence Analysis for Optimal Control Problems
下载PDF
导出
摘要 对于椭圆最优控制问题,借助双k次矩形有限元空间理论及插值逼近性质、奇次矩形元导数恢复算子技术等,研究获得了最优控制问题在局部对称网格上的有限元逼近解的一个超收敛结果. For optimal control problems governed by elliptic equations, a super-convergence result for finite element approximation solutions of the optimal control problems in locally symmetric meshes could be obtained by using the double k rectangular finite element space theory, its interpolation approximation properties, and the derivative recovery operator technique of odd-degree rectangular elements.
出处 《温州大学学报(自然科学版)》 2011年第3期6-12,共7页 Journal of Wenzhou University(Natural Science Edition)
基金 凯里学院院级规划课题资助项目(z1019)
关键词 最优控制问题 奇次矩形元 导数恢复算子 超收敛 Optimal Control Problem Odd-degree Rectangular Element Derivative Recovery Operator Super-convergence
  • 相关文献

参考文献5

二级参考文献20

  • 1ZHU Qiding,MENG Lingxiong.New construction and ultraconvergence of derivative recovery operator for odd-degree rectangular elements[J].Science China Mathematics,2004,47(6):940-949. 被引量:3
  • 2Qi-dingZhu Ling-xiongMeng.THE DERIVATIVE ULTRACONVERGENCE FOR QUADRATIC TRIANGULAR FINITE ELEMENTS[J].Journal of Computational Mathematics,2004,22(6):857-864. 被引量:4
  • 3朱起定,孟令雄.奇次矩形元导数恢复算子的新构造及其强超收敛性[J].中国科学(A辑),2004,34(6):723-731. 被引量:3
  • 4Zienkiewicz O C, Zhu J Z. Superconvergence and the superconvergent patch recovery finite element. Anal Design, 1995, 19:11-23
  • 5Zienkiewiz O C, Zhu J Z, Wu J. Superconvergence patch recovery techniques--some further tests.Commun Num Math Meth Erg, 1993, 9:251-258
  • 6Zhang Z M, Zhu J Z. Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (Ⅰ). Comput Methods Appl Mech Engrg, 1995, 123:173-187
  • 7Zhang Z M, Zhu J Z. Analysis of the supencorvergent patch recovery technique and a posteriori errorestimator in the finite element method (Ⅱ). Comput Methods Appl Mech Engrg, 1998, 163:159-170
  • 8Zhang Z M, H D Victorg Jr. Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery tech-nique. Numer Methods for PDEs, 1996, 12:507-524
  • 9Zhu Q D, Zhao Q H. SPR technique and finite element correction. Numer Math, 2003, 96:185-196
  • 10Zhu Q D. Natural inner superconvergence for the finite element method. In: Feng K, Lions J L, eds.Proceedings of the China-France Symposium on Finite Element Methods. Beijing: Science Press, Gorden and Breach, 1983. 935~960

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部