摘要
对于椭圆最优控制问题,借助双k次矩形有限元空间理论及插值逼近性质、奇次矩形元导数恢复算子技术等,研究获得了最优控制问题在局部对称网格上的有限元逼近解的一个超收敛结果.
For optimal control problems governed by elliptic equations, a super-convergence result for finite element approximation solutions of the optimal control problems in locally symmetric meshes could be obtained by using the double k rectangular finite element space theory, its interpolation approximation properties, and the derivative recovery operator technique of odd-degree rectangular elements.
出处
《温州大学学报(自然科学版)》
2011年第3期6-12,共7页
Journal of Wenzhou University(Natural Science Edition)
基金
凯里学院院级规划课题资助项目(z1019)
关键词
最优控制问题
奇次矩形元
导数恢复算子
超收敛
Optimal Control Problem
Odd-degree Rectangular Element
Derivative Recovery Operator
Super-convergence