期刊文献+

改进的BP神经网络算法在航迹匹配中的应用 被引量:5

Application of Improved Back Propagation Neural Network Algorithm in Track Matching
下载PDF
导出
摘要 利用迭代最近等值点(ICCP)算法对重力图上的航迹进行匹配可以减小惯性导航系统误差,但计算量大。针对上述问题,通过修改激励函数并增加假饱和预防函数,提出一种改进的反向传播神经网络学习算法。仿真结果表明,该算法可以加快搜索最近等值点的速度,更好地满足重力辅助导航对匹配精度及匹配速度的要求。 It can reduce the error of the inertial navigation system when using Iterative Closest Contour Point(ICCP) algorithm for track matching on the gravity map,however it brings large computation costs.By modifying the activation function and false-saturating prevention function,this paper presents an improved Back Propagation(BP) neural network learning method to search for the closest contour points.Simulation results show that the algorithm improves the searching speed of the closest point and meets the matching speed and accuracy demand of gravity-aided navigation.
作者 黄鹏 成怡
出处 《计算机工程》 CAS CSCD 北大核心 2011年第11期218-219,222,共3页 Computer Engineering
关键词 反向传播神经网络 迭代最近等值点算法 航迹匹配 惯性导航 梯度下降 Back Propagation(BP) neural network Iterative Closest Contour Point(ICCP) algorithm track matching inertial navigation gradient descent
  • 相关文献

参考文献5

二级参考文献17

共引文献90

同被引文献75

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部