摘要
利用迭代最近等值点(ICCP)算法对重力图上的航迹进行匹配可以减小惯性导航系统误差,但计算量大。针对上述问题,通过修改激励函数并增加假饱和预防函数,提出一种改进的反向传播神经网络学习算法。仿真结果表明,该算法可以加快搜索最近等值点的速度,更好地满足重力辅助导航对匹配精度及匹配速度的要求。
It can reduce the error of the inertial navigation system when using Iterative Closest Contour Point(ICCP) algorithm for track matching on the gravity map,however it brings large computation costs.By modifying the activation function and false-saturating prevention function,this paper presents an improved Back Propagation(BP) neural network learning method to search for the closest contour points.Simulation results show that the algorithm improves the searching speed of the closest point and meets the matching speed and accuracy demand of gravity-aided navigation.
出处
《计算机工程》
CAS
CSCD
北大核心
2011年第11期218-219,222,共3页
Computer Engineering
关键词
反向传播神经网络
迭代最近等值点算法
航迹匹配
惯性导航
梯度下降
Back Propagation(BP) neural network
Iterative Closest Contour Point(ICCP) algorithm
track matching
inertial navigation
gradient descent