期刊文献+

基于数据压缩的多传感器PHD滤波算法

Multi-sensor PHD Filter Algorithm Based on Data Compression
下载PDF
导出
摘要 针对多传感器多目标跟踪,提出一种基于数据压缩的多传感器概率假设密度(PHD)滤波算法,解决串行多传感器PHD(SMSPHD)滤波计算量过大的问题。算法首先利用数据压缩将多传感器量测数据转换成等效的单传感器量测数据,然后在此基础上进行PHD滤波。仿真结果表明,该算法可以实现对多目标的有效跟踪;此外,随传感器数目的增加,该算法增加的计算量约为SMSPHD滤波算法增加的4.3%。 For multi-sensor multi-target tracking, a novel multi-sensor probability hypothesis density (PHD) filter based on data compression was proposed to solve the computation load of the serial multi-sensor PHD (SMSPHD) filter. With the proposed method, firstly, the multi-sensor measurements were equivalently converted to those from a single sensor by using data compres- sion, then, the PHD filter was executed. The simulation results demonstrate that the proposed method can realize the tracking of multiple targets effectively. Moreover, as the increasing of the number of sensors, the added computational complexity of the proposed method is about 4.3% of that of the SMSPHD.
出处 《弹箭与制导学报》 CSCD 北大核心 2011年第2期161-164,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国家自然科学基金(60972159 61032001 61002006) 航空科学基金资助
关键词 数据压缩 概率假设密度 多传感器 多目标跟踪 data compressing probability hypothesis density multi-sensor multi-target tracking
  • 相关文献

参考文献12

  • 1M Duarte,Y H Hu.Vehicle classification in distributed sensor networks[J].Journal of Parallel and Distributed Computing,2004,64(7):826-838.
  • 2C David,E Deborah,S Mani.Overview of sensor networks[J].IEEE Computer,Special Issue in Sensor Networks,2004,37(8):4-49.
  • 3K Chang,C Chong,Y Bar-Shalom.Joint probabilistic data association in distributed sensor networks[J].IEEE Trans.on Automatic Control,1986,AC-31(10):889-897.
  • 4S S Blaekman.Multiple hypothesis tracking for multiple targets tracking[J].IEEE Transactions on Aerospace and Electronic Systems Magazine,2004,19(1):5-18.
  • 5S W Joo,R Chellappa,A multiple-hypothesis approach for multiobject visual tracking[.J].IEEE Transactions on Image Processing,2007,16 (11):2849-2854.
  • 6K Panta,B Vo,S Singh.Novel data association schemes for the probability hypothesis density filter[J].IEEE Transactions on Aerospace and Electronic Systems,2007,45(2):556-570.
  • 7R Mahler.Multitarget Bayes filtering via first-order mul-titarget moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,39(4):1152-1178.
  • 8B Vo,S Singh,A Doucet.Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1224-1245.
  • 9B Vo,W K Ma.The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing,2006,54(11):4091-4104.
  • 10L Lin,Y Bar-Shalom,T Kirubarajan.Track labeling and the PHD filter for multitarget tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):778-795.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部