期刊文献+

一类串联系统的边界Carleman估计 被引量:1

Boundary carleman estimate for a class of cascade system
下载PDF
导出
摘要 讨论了一类由两个热方程所组成的串联系统,在该串联系统中,将第一个方程的解作为第二个方程的边界输入,建立了解的边界Carleman型先验估计,即解在区域内部的加权L2模可以被解在部分边界上的加权L2模控制. This paper is concerned with a class of cascade system composed by two heat equations.In this cascade system,the solution of the first equation is the boundary input of the second equation.The boundary Carleman-type priori estimates of solutions are established.That is,the weighted L2 norm of a solution in the domain is controlled by the weighted L2 norm of a solution on the partial boundary.
作者 栾姝 徐鹏
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期39-45,共7页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771085) 湛江师范学院博士专项基金资助项目(ZL0901)
关键词 热方程 串联系统 边界Carleman估计 heat equation; cascade system; boundary Carleman estimate
  • 相关文献

参考文献14

  • 1BARBU V,VASCANU A,TESSITORE G. Carleman estimates and controllability of linear stochatie heat equations[J]. Appl Math Optim,2003,47(2) :97-120.
  • 2FURSIKOV A V, IMANUVILOV O YU. Controllability of evolution equations[M].Seoul: Verilux Tasmea, 1996: 3-22.
  • 3KLIBANOV M V. Inverse problems and Carleman estimates[J]. Inverse Problems, 1992,8 : 575-596.
  • 4GARLEMAN T. Sur un problem pour les systemes d'equations aux deriv ees partielles adeux variables independantes[J]. Ark Mat Astr Fys B,1939,26:1-9.
  • 5HORMANDER L. The analysis of linear partial differential operators[M]. New York:Springer-Verlag, 1985:100-115.
  • 6ISAKOV V. Carleman type estimates in anisotropic case and applications[J].Journal of Differential Equations,1993,105(2) : 217-238.
  • 7TATARU D. A-priori estimates of Carleman's type in domains with boundary[J]. Journal de Mathematiques Pure et Appl, 1994,73 :355-387.
  • 8TATARU D. Carleman estimates and unique continuation near the boundary for PDE's[J]. Journal de Math Pure et Appl, 1996,75 : 367-408.
  • 9YU O. Imanuvilov,controllability of parabolic equations[J]. Sbornik Mathematics, 1995,186(6) :879-900.
  • 10TATARU D. Carleman estimates,unique continuation and controllability for anizotropic PDE's[J]. Contemporary Mathematics, 1997, 209 : 267-279.

二级参考文献13

  • 1LI X, YONG J. Optimal control theory for infinite dimensional systems[ M]. Birkhauser Boston: Cambridge MA, 1995 : 168-179.
  • 2BARBU V. Analysis and control of nonlinear infinite dimensional systems[M]. New York: Academic Press, 1993:285-305.
  • 3ALIBERT J J,RAYMOND J P. Boundary control of semilinear elliptic equations with discontinuous leading coefficient and unbounded controls[J]. Numer, Funct, Anal Optim, 1997,18 : 235-250.
  • 4BORS D,WALCZAK S. Optimal control elliptic systems with distributed and boundary controls[J]. Nonlinear Anal, 2005,63(e) :1367- 1376.
  • 5CRANDALL MG, RABINOWITZ P. Bifurcation peturbation of simple eigenvalues, and linearized stability[J]. Arch Rational Mech Anal, 1973,53 : 161-180.
  • 6LIONS J L. Controle de systemes distribues singuliers[M].Paris: Dunod, 1983:550-568.
  • 7BONNANS J F,CASAS E. Optimal control of semilinear multistate systems with state constraints[J].SlAM J Control Optim, 1989,27 (2) :446-455.
  • 8GAO H. Optimality condition for a class of semi-linear elliptic equations[J].Acta Math Sinica, 2001,44 (2) :319-332.
  • 9WANG G,WANG L. Maximum principle of optimal control of non-well posed elliptic differential equations[J]. Nonlinear Anal, 2003, 52:41-67.
  • 10EVANS L C. Partial differential equations[M]. Rhode Island American Mathematical Sciety, 1998:502- 503.

同被引文献15

  • 1ZHU XUSHENG,WANG WEIKE.THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING[J].Chinese Annals of Mathematics,Series B,2005,26(4):583-598. 被引量:18
  • 2ALINHAC S.Blowup for nonlinear hyperbolic equations[M],Boston:Birkhauser,1995:33-36.
  • 3SIDERIS T.Formation of singularities in three-dimensional compressible fluids[J],Comm Math Phys,1985,101:475-485.
  • 4LIU T P,YANG T.Compressible Euler equations with vacuum[J].Jr Differential Equations.1997,140-223-237.
  • 5MAKINO T,UKAI S,KAW ASHIMA S.Sur la solution a support compact de I'equation of Euler compressible[J].Japan J Indust Appl Math,1986(3):249-257.
  • 6LI T,WANG D.Blowup phenomena of solutions to the Euler equations for compressible fluid flow[J].J Differential Equations,2006,221:91-101.
  • 7ZHU XUSHENG,TU AIHUA.Blowup of the axis-symmetric solutions for the IBVP of the isentropic Euler equations[J].Nonlinear Analysis J Theory,Methods Applications,2014,95:99-106.
  • 8YUEN M W,Blowup for the Euler and Euler-Poisson equations with repulsive force[J].Nonlinear Analysis Series A:Theory* Methods Applications,2011,74:1465-1470.
  • 9PERTHAME B.Nonexistence of global solutions to Euler-Possion equations for repulsive force[J].Japan J Appl Math,1990,7(2):363-367.
  • 10MAKINO T.Blowing up solutions of the Euler-Poisson equations for the evolution of the gaseous stars[J].Transport Theory and Statistical Physics,1992,21:615-624.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部