期刊文献+

基于物种的自适应多模态粒子群优化算法 被引量:4

Adaptively species-based multimodal particle swarm optimization
原文传递
导出
摘要 通过对粒子群优化问题、小生境技术和多模态粒子群优化算法的深入研究,提出了一种自适应的多模态粒子群优化算法——ASPSO(adaptively species-based particle swarm optimization)。对ASPSO算法进行了综合测试,并与经典的多模态粒子群优化算法ANPSO和SPSO进行了比较。实验表明,ASPSO在处理低维测试函数与ANPSO和SPSO具有同样高的成功率和峰值覆盖率,并且ASPSO在处理高维复杂测试函数时,表现出的性能比其他已经存在的多模态粒子群优化算法更好。 The adaptively species-based particle swarm optimization(ASPSO) is proposed based on the analysis of particle swarm optimizer(PSO),niching techniques and multimodal particle swarm optimization algorithms.The ASPSO is comprehensively tested and compared with ANPSO and SPSO.Experimental results show that ASPSO has a success rate as high as ANPSO and SPSO in solving low dimensional problems,and has better performance in solving high dimensional and difficult problems than other existing multimodal particle swarm optimization algorithms.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2011年第5期91-96,122,共7页 Journal of Shandong University(Natural Science)
关键词 多模态函数 粒子群 小生境技术 优化算法 multimodal function; particle swarm; niching technique; optimization algorithm;
  • 相关文献

参考文献14

  • 1KENNEDY J, EBERHART R. Particle swarm optimiza- tion [ C ]//IEEE International Conference on Neural Net- works. Washington: IEEE Computer Society, 1995: 1942-1948.
  • 2MAHFOUD S W. Crowding and preselection revisited [ M ]//MANNER R, MANDERICK B. Parallel Problem Solving From Nature. Amsterdam: Elsevier Science Pub- lishers (North Holland), 1992: 27-36.
  • 3PETROWSKI A. A clearing procedure as a niching meth- od for genetic algorithms [ C ]// Proceedings of IEEE In- ternational Conference on Evolutionary Computation. Washington : IEEE Computer Society, 1996 : 798-803.
  • 4BEASLEY D, BULL D R, MARTIN R R. A sequential niche technique for multimodal function optimization [ J ]. Evolutionary Computation, 1993, 1 (2) : 101-125.
  • 5LI Jianping, BALAZS M E, PARKS G T, et al. A spe- cies conserving genetic algorithm for multimodal function optimization[ J ]. Evolutionary Computation, 2002, 10 ( 3 ) : 207-234.
  • 6LI Xiaodong. Adaptively choosing neighbourhood bests u- sing species in a particle swarm optimizer for multimodal function optimization[J]. Lecture Notes in Computer Sci- ence, 2004, 3102 : 105-116.
  • 7IWAMATSU M. Multi-species particle swarm optimizer for multimodal function optimization [ J ]. IE ICE Transactions on Information and Systems, 2006, 89(3) :1181-1187.
  • 8BIRD S, LI Xiaodong. Enhancing the robustness of a spe- ciafion-based PSO [ C ]// Proceedings of IEEE Congress on Evolutionary Computation. Washington: IEEE Com- puter Society, 2006 : 843-850.
  • 9BIRD S, LI Xiaodong. Adaptively choosing niching pa- rameters in a PSO [ C ]// Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM Press, 2006: 3-10.
  • 10ALESSANDRO P, ANTONINA S. Particle swarm opti- mization for multimodal functions: a clustering approach [J ]. Journal of Artificial Evolution and Applications- Particle Swarms: the Second Decade, 2008, 2008: 1- 15.

二级参考文献2

  • 1耿素云.离散数学[M].北京:高等教育出版社,2000..
  • 2席德勋.离散数学教程[M].北京:科学出版社,..

共引文献21

同被引文献34

  • 1陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版),2006,34(5):684-688. 被引量:7
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3叶龙,王京玲,张勤.遗传重采样粒子滤波器[J].自动化学报,2007,33(8):885-887. 被引量:43
  • 4CLERC M, KENNEDY J. The particle swarm explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Trans on Evolutionary Computation ,2002,6( 1 ) :58-73.
  • 5DEB K. Genetic algorithms in multimodal function optimization, Technical Report 89002 [ R ]. Tuscaloosa: University of Alabama, 1989.
  • 6ACKLEY D. An empirical study of bit vector function optimization [ M ]// McNEILL A R. Optima for Animals. London: Edward Ar- nold, 1987 : 170-204.
  • 7LI Jian-ping, BALAZS M E, PARKS G T, et al. A species serving genetic algorithm for muhimodal function optimization [ J ]. Evolu- tionary Computation,2002,10 ( 3 ) :207- 234.
  • 8SHIR O, BACK T. Niche radius adaptation in the CMS-ES niching algorithm[ C ]//Proc of the 9th International Conference on Parallel Problems Solving Nature. [S. 1. ] : Springer, 2006: 142-151.
  • 9LI Xiao-dong; Niching without niching parameters: particle swarm optimization using a ring topology[J]. IEEE Trans on Evolutionary Computation ,2010,14( 1 ) : 150-169.
  • 10KENNEDY J, EBERHART R. Swarm intelligence[ M]. San Mateo CA : Morgan Kaufmann ,2006 : 187- 219.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部