期刊文献+

基于服务交互图的操作组群服务发现

Discovery of Operation Cluster Based on Service Interaction Figure
下载PDF
导出
摘要 随着网络发布的Web服务数量急剧增加,面对数量庞大的服务群,如何从海量的Web服务中快速、准确、高效发现满足用户需求的服务已成为亟待解决的问题。针对传统的服务发现准确性不高,发现方法效率低下的现状,本文提出了一个基于服务交互图的操作组群发现的方法。利用聚类技术,从服务行为相似的层面对服务进行聚类预处理,从而大大缩小服务检索范围,提高服务匹配的时间。并在服务匹配过程中,基于服务交互图的操作组群挖掘,从而可以提高查找的精确度。最后,利用仿真实验对所提出的方法进行验证. Now,with the increasing of Web services,how to quickly,accurately and efficiently find services which satisfy the user requirements from a large mount of Web services has become a big challenge.For the fact that the accuracy is not high and low efficiency of the way,this article introduced the service of the operation of the group discovered.Firstly,from a similar level of services,the utilization of service clustering potentially enables service match-maker to significantly reduce the overhead,deploy the discovery of candidate services quickly.Secondly,in the services matching process,based on the service of the group of operations,we can increase accuracy.Finally,some simulation results are demonstrated to show the effectiveness of the proposed method.
作者 刘薇
出处 《沈阳理工大学学报》 CAS 2011年第1期29-33,共5页 Journal of Shenyang Ligong University
关键词 WEB服务 相似度 聚类 组群服务发现 Web service similarity clustering cluster service discovery
  • 相关文献

参考文献7

  • 1Sudha Rajagopal, Thamarai Selvi S. Semantic grid service discovery approach using clustering of service ontologies [ C ]. Proceedings of IEEE TENCON 2006, Hong Kong, China, 2006 : 1 - 4.
  • 2Ram Sudha, Hwang Yousub, Zhao Huimin. A clustering based approach for facilitating semantic Web service discovery [ C ]. Proceedings of the 15th Annual Workshop on Information Technologies & Systems, Las Vegas, USA, 2006 : 1-6.
  • 3Nayak R, Lee B. Web service discovery with additional semantics and clustering[C]. Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence, Washington, DC, 2007:555-558.
  • 4Shi J, Malik J. Normalized cuts and image segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 8 ) : 888 -905.
  • 5Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm [ C ]. Advances in Neural Information Processing Systems 14. MA: MIT Press,2001.
  • 6向世明,赵国英,崔丽,陈睿,李华.拓扑图格独立分量分析和谱聚类支持的纹理探测[J].计算机辅助设计与图形学学报,2005,17(5):935-940. 被引量:3
  • 7高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31

二级参考文献51

  • 1MIT Vision and Modeling Group [OL]. htttp://www.media.mit. edu/vismod/, 1998
  • 2Brodatz P. Textures: A Photographics Album for Artists and Designers [M]. New York: Dover, 1966
  • 3Tuceryan M, Jain A K. Texture analysis [A]. In: Chen CH, Pau L F, Wang P S P. The handbook of pattern recognition and computer vision, 2nd ed [C]. Singapore: World Scientific Publishing Company, 1998. 207~ 248
  • 4Reed T R, du Bur J. A review of recent texture segmentation and feature extraction techniques [J]. Computer Vision,Graphics, and lmage Processing: Image Understanding, 1993,57(3): 359~372
  • 5Zhang J G, Tan T N. Brief review of invariant texture analysis methods [J]. Pattern Recognition, 2002, 35(3): 735~747
  • 6Randen T, Husoy J H. Filtering for texture classification: A comparative study [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4): 291~310
  • 7Chen C C, Chen C C. Filtering methods for texture discrimination [ J ] . Pattern Recognition letters, 1999, 20 (8):783~790
  • 8Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters [ J ]. Pattern Recognition, 1991, 24 (12):1167 ~ 1186
  • 9Manjunath B S, Ma W Y. Texture features for browsing and retrieval of image data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837~842
  • 10Hyvarinen A, Oja E. Independent component analysis:Algorithms and applications [J]. Neural Networks, 2000, 13(4~5): 411~430

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部