期刊文献+

一种基于分水岭变换和模糊C均值聚类的彩色图像分割算法 被引量:4

Based on Watershed Transform and Fuzzy C Means Clustering Algorithm for Color Image Segmentation
下载PDF
导出
摘要 针对分水岭算法对在图像分割中容易产生过分割,提出了一种基于分水岭变换和模糊C均值(FCM)聚类算法的彩色图像分割算法。该算法先对图像进行分水岭分割,再对分水岭产生的过分割进行聚类合并。在合并过程中采用区间差异度和区域面积来确定模糊C均值聚类个数。该算法的优点是解决了分水岭变换算法的过分割问题的同时解决了模糊C均值聚类算法的初始值以及聚类中心难以确定的问题。实验结果表明,该算法可以准确地分割出目标并应用到自动分割系统中。 For the watershed algorithm is very sensitive to weak edges and noise,thus in the watershed algorithm is applied to image segmentation prone to over-segmentation.A new color image segmentation algorithm basing on watershed transformation and a fuzzy C mean(FCM) clustering algorithm are proposed.In this algorithm,watershed segmentation is carried on image,and then clusters and mergers the over-segmentation generated by the watershed,during the merging process using the degree of sector differences and the region area to determine the cluster number of FCM.The advantage of this algorithm is to solve over-segmentation problems caused by watershed transformation algorithm and meanwhile solve problems which are difficult to determine the initial value and cluster centers of FCM algorithm.Experimental results show that the algorithm can segment the target accurately and apply to automatic segmentation system.
出处 《科学技术与工程》 2011年第18期4237-4239,共3页 Science Technology and Engineering
关键词 分水岭变换 模糊C均值聚类 彩色图像分割 watershed algorithm FCM color image segmentation
  • 相关文献

参考文献5

  • 1Uchiyama T, Arbib M A. Colourimagesegmentation using competitive learning. 1EEE-PAMI, 1994 ; 16 : 1197--1206.
  • 2Zhong D X, Yah H. Color image segmentation using color space analysis and fuzzy clustering. In : Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop. Sydney, NSW Australia,2000 ;2:624-633.
  • 3Roerdink J, Meijster A. The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informatics ,2000 ;41 (1/2) :187-228.
  • 4Vincent L, Soille P. Watersheds in digital spaces:An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991 ; 13 ( 6 ) :583 -598.
  • 5张应辉,饶云波.最小差异度聚类在异常入侵检测中的应用[J].计算机应用研究,2007,24(12):193-195. 被引量:1

二级参考文献13

  • 1贺跃,郑建军,朱蕾.一种基于熵的连续属性离散化算法[J].计算机应用,2005,25(3):637-638. 被引量:15
  • 2严晓光,褚学征.聚类在网络入侵的异常检测中的应用[J].计算机系统应用,2005,14(10):34-37. 被引量:5
  • 3蒋盛益,李庆华.基于引力的入侵检测方法[J].系统仿真学报,2005,17(9):2202-2206. 被引量:6
  • 4伊胜伟,刘旸,魏红芳.基于数据挖掘的入侵检测系统智能结构模型[J].计算机工程与设计,2005,26(9):2464-2466. 被引量:10
  • 5HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.
  • 6苏瑜睿,冯登国.基于非层次聚类的异常检测模型[C]//中国计算机大会论文集.北京:清华大学出版社,2005.
  • 7张彬 胡茜.入侵检测概念、过程分析和部署.数据通信,2004,(12):45-48.
  • 8GANTI G J, RAMAKRISHNAN R. CACTUS: clustering categorical data using summaries [ C ]//Proc of Int Conf Knowledge Discovery and Data Mining. New York: ACM Press, 1999:73-83.
  • 9HUANG Zheng-xue. Extensions to the K-means algorithm for clustering large data sets with categorical values [ J]. Data Mining and Knowledge Discovery, 1998,2:283-304.
  • 10WARRENDER C, FORREST S, PEARLMUTrER B, Detecting intrusions using system calls alternative data models[ C ]//Pmc of IEEE Symposium an Security and Privacy. Oakland: IEEE ComputerSociety, 1999 : 133-145.

同被引文献58

引证文献4

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部