期刊文献+

New Criteria for Oscillation of Vector Parabolic Equations with Continuous Distribution Arguments 被引量:3

New Criteria for Oscillation of Vector Parabolic Equations with Continuous Distribution Arguments
下载PDF
导出
摘要 The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inner product,the multi-dimensional oscillation problems are changed into the problems of which one-dimensional functional differential inequalities have not eventually positive solution.Some new sufficient conditions for the H-oscillation of all solutions of the equations are obtained under Dirichlet boundary condition,where H is a unit vector of RM.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2011年第2期260-264,共5页 数学季刊(英文版)
基金 Supported by the Science Research Foundation of Administration of Education of Hunan Province(07C164)
关键词 H-oscillation VECTOR parabolic equation continuous distribution argument H 摆动;向量;寓言的方程;连续分发争论;
  • 相关文献

参考文献8

  • 1DOMSLAK Ju I. On the oscillation of solutions of vector differential equations[J]. Soviet Math Dokl, 1970, 11: 839-841.
  • 2COURANT R, HILBERT D. Methods of Mathematical Physics(Vol.I)[M]. New York: Interscience, 1996.
  • 3MINCHEV E, YOSHIDA N. Oscillation of solutions of vector differential equations of parabolic type with functional arguments[J]. J Comput Appl Math, 2003, 151(1): 107-117.
  • 4LI W N, HAN M A, MENG F W. H-oscillation of solutions of certain vector hyperbolic differential equations with deviating arguments[J]. Appl Math Comput, 2004, 158(3): 637-653.
  • 5罗李平,杨柳.具连续偏差变元的中立型向量抛物偏微分方程的H-振动性[J].纯粹数学与应用数学,2009,25(4):801-806. 被引量:4
  • 6LUO Li-ping. Oscillation of Solutions of Neutral Vector Parabolic Equations with Continuous Distribution Delay: Proceedings of the 7th Conference on Biological Dynamic System and Stability of Differential Equation (Vol.II)[C]. Liverpool: World Academic Press, 2010: 664-668.
  • 7GILBARG D, TRUDINGER N S. Elliptic Partial Equations of Second Order[M]. Berlin: Springer-Verlag, 1977.
  • 8LADDE G S, LAKSHMIKANTHAM V, ZHANG B G. Oscillation Theory of Differential Equations with Deviating Arguments[M]. New York and Basel: Marcel Dekker Inc, 1987.

二级参考文献10

共引文献3

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部