期刊文献+

一种蛙跳和差分进化混合算法 被引量:13

Novel hybrid shuffled frog leaping and differential evolution algorithm
下载PDF
导出
摘要 混洗蛙跳算法(SFLA)具有算法简单、控制参数少、易于实现等优点,但在高维难优化问题中算法容易早熟收敛且求解精度不高。导致该缺陷的主要原因是在进化后期种群多样性迅速下降,且缺乏局部细化搜索能力。借鉴差分进化算法(DE)中DE/best/1/bin版本具有全局搜索能力较强、种群多样性较好的优点,将SFLA与DE有机融合,形成混合优化算法(SFL-DE),以克服SFLA容易早熟收敛的缺陷。给出了6个30维benchmark问题数值对比实验,结果表明,在给定的较小进化代数内,SFL-DE的寻优效率、计算精度、鲁棒性等性能优于SFLA和基本DE(DE/best/1/bin和DE/rand/1/bin),不足之处是其耗时更长。 Shuffled Leaping Frog Algorithm(SFLA) is characterized by simplicity,few control parameters required,and easily be used,but has the disadvantages of premature convergence and low precision for hard high-dimensional optimization prob- lems,due to its rapid loss of the population diversity and the lack of local refined search abilities at the later stages of generations.In order to overcome the easy premature or early convergence of SFLAs,this paper hybridizes the SFLA and the Differential Evolution(DE) algorithm to form a hybrid optimization algorithm,namely SFL-DE,which borrows the idea from DE/best/1/bin strategy that has the advantages of strong global search ability and better population diversity.Comparisons are presented to test performances of the new algorithm employing 6 benchmark 30-dimensional functions.Compared with SFLA and standard DE(i.e.,DE/best/1/bin and DE/rand/1/bin schemes) algorithms,the experimental results in terms of the global optimization efficiency,the solution accuracy and the computation robustness demonstrate that the SFL-DE algorithm is a better tool for solving some benchmark optimization problems within a few fixed generations,but takes a longer run time.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第18期4-8,共5页 Computer Engineering and Applications
基金 四川省应用基础研究计划项目(No.2008JY0163) 泸州市重点科技计划项目(No.2010-S-21(2/7))
关键词 混洗蛙跳算法 差分进化算法 混合优化 连续优化问题 Shuffled Frog Leaping Algorithm(SFLA) Differential Evolution(DE) algorithm hybrid optimization continuous optimization problem
  • 相关文献

参考文献6

二级参考文献115

共引文献489

同被引文献106

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:85
  • 2李阳阳,焦李成.求解SAT问题的量子免疫克隆算法[J].计算机学报,2007,30(2):176-183. 被引量:45
  • 3王冬冬,周永权.人工鱼群算法在求解非线性方程组中的应用[J].计算机应用研究,2007,24(6):242-244. 被引量:31
  • 4李士勇,李盼池.求解连续空间优化问题的量子粒子群算法[J].量子电子学报,2007,24(5):569-574. 被引量:56
  • 5Eusuff M M,Lansey K E.Optimization of Water DistributionNetwork Design Using the Shuffled Frog Leaping Algorithm[J].Journal of Water Sources Planning and Management,2003,129(3):210-225.
  • 6Babak A,Mohammad F,Maroosi A.Application of ShuffledFrog-leaping Algorithm on Clustering[J].The International Journalof Advanced Manufacturing Technology,2009,45(1-2):199-209.
  • 7Elbeltagi E,Hegazy T,Grierson D.Comparison Among FiveEvolutionary-based Optimization Algorithms[J].AdvancedEngineering Informatics,2005,19(1):43-53.
  • 8MUZAFFAR M E, KEVIN E L. Optimization of water distribution network design using the shuffled frog leaping algorithm[ J]. Journal of Water Resources Planning and Management,2003,129 (3) : 210-225.
  • 9ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Enginee- r ng nlormat cs,2005,19 ( 1 ) :43- 53.
  • 10ZHEN Zi-yang, WANG Zhi-sheng, GU Zhou, et al. A novel memetic algorithm for global optimization based on PSO and SFLA[ C ]//Proc of the 2nd International Conference on Advances Computation and In- telligence. Berlin : Springer-Verlag, 2007 : 127 - 136.

引证文献13

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部