期刊文献+

具有阻尼的半线性波动方程解的衰减估计

Decay Estimate of Solution for Damped Semilinear Wave Equation
原文传递
导出
摘要 研究具有阻尼的半线性波动方程的初边值问题u_(tt)-△u+βu_t=|u|^(p-1)u,x∈Ω,t>0u(x,0)=u_0(x),u_t(x,0)=u_1(x),x∈Ωu|_((?)Ω)=0,t≥0其中γ为正常数,Ω■R^n为有界域,当n≥3时,1<p≤(n+2)/(n-2);当n=1,2时,1<p<∞.首先利用紧致性方法和位势井方法证明了此问题整体弱解的存在性.而后,利用位势井族方法证明了,当时间t→+∞时,此解依t的指数形式衰减于零.结果从根本上改进了已有结果. In, this paper we study the initial-boundary value problem of damped semilinear wave equation utt-△u+γut=|u|p-1u,x∈Ω,t〉0 u(x,0)=u0(x),ut(x,0)=u1(x),x∈Ω u| Ω=0,t≥0 where γ is a positive constant, Ω R^n Rn is a bounded domain, 1〈p≤n+2/n-2 for n ≥ 3; 1 〈 p 〈∞ for n = 1, 2. First by using compactness method and potential well method we prove the global existence of weak solution. Then by introducing a family of potential wells, we prove that when time t→+∞ the global weak solution decays to zero exponently.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第13期185-192,共8页 Mathematics in Practice and Theory
关键词 半线性波动方程 阻尼 整体存在性 衰减估计 位势井 Semilinear wave equation damping global existence decay estimate potential wells
  • 相关文献

参考文献3

二级参考文献31

  • 1Wang B. X., On existence and scattering for critical and subcritical nonlinear Klein-Gordon equations in Hs,Nonlinear Anal. TMA., 1998, 31: 573-587.
  • 2Zhang J., On the standing wave in coupled nonlinear Klein-Gordon equations, Math. Meth. Appl. Sci., 2003,26: 11-25.
  • 3Zhang J., Sharp conditions of global existence for nonlinear Schrodinger and Klein-Gordon equations, Nonlinear Anal. TMA., 2002, 48: 191-207.
  • 4Soffer A., Weinstein M. I., Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., 1999, 136: 9-74.
  • 5Rabinowitz P. H., On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys., 1992, 43: 270-291.
  • 6Wang X. F., Zeng B., On concentration of positive bound states of nonlinear Schrodinger equations with competing potential functions, SIAM J. Math. Anal., 1997, 28(3): 633-655.
  • 7Pagne L. E., Sattinger D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math.,1975, 22(3/4): 273-303.
  • 8Levine H. A., Instability and non-existence of global solutions to nonlinear wave equations of the form Putt =-Au + F(u), Trans. Amer. Math. Soc., 1974, 192: 1-21.
  • 9Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrodinger et de KG nonlinéaires, C. K. Acad. Sci. Paris, 1981, 293: 489-492.
  • 10Berestycki H., Gallouet T., Kavian O., Equations de champs scalaires euclidiens nonlinéaires dans le plan,C. R. Acad. Sci. Paris, Serie I, 1983, 297: 307-310.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部