期刊文献+

基于多智能体团队强化学习的交通信号控制 被引量:2

Urban Traffic Signal Control Based on Multi-agent Team Reinforcement Learning Methods
下载PDF
导出
摘要 城市的区域交通信号协调系统是一个十分复杂的系统,难以建立准确的数学模型,通过引入主-从式团队强化学习方法于区域交通信号协调控制,就可以根据实时的交通状态信息动态来进行决策,自动地适应环境以便取得更好的控制效果.由于问题状态空间太大且难以直接存储和表示,采用径向基函数神经网络进行值函数近似.通过训练自适应非线性处理单元,达到较好的近似表示效果,解决了多个交叉路口的交通信号协调控制问题.通过仿真实验,结果表明该方法的控制效果明显优于单点控制策略. Urban traffic signal coordination control system is very complicate,so it is very difficult to build a precise mathematical model for it.In this paper,we use multi-agent team reinforcement leaning algorithm to control the traffic signal,thus the decision can be made dynamically according to real-time traffic status information,and the change of environment can be adapted automatically.As the state space is too big to be stored and expressed directly,we apply radial basis function neural network to approximate the value function.By training adapted non-linear processing unit,the approximation is improved and thus the coordination control of traffic signal at multi junctions is solved.The simulation results show that the effectiveness of the new control algorithm is obviously better than single agent method.
出处 《广西工学院学报》 CAS 2011年第2期1-5,15,共6页 Journal of Guangxi University of Technology
基金 广西科技攻关计划项目(桂科攻0992006-13)资助
关键词 多智能体团队学习 交通信号控制 强化学习 值函数近似 径向基函数神经网络 multi-agent team learning traffic signal control reinforcement learning value function approximation radial basis function neural network
  • 相关文献

参考文献11

二级参考文献35

共引文献51

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部