期刊文献+

含噪语音实时迭代维纳滤波 被引量:4

Iterative Wiener filtering-based real-time voice in noises
下载PDF
导出
摘要 针对传统去噪方法在强背景噪声情况下,提取声音信号的能力变弱甚至失效与对不同噪声环境适应性差,提出了迭代维纳滤波声音信号特征提取方法。给出了语音噪声频谱与功率谱信噪比迭代更新机制与具体实施方案。实验仿真表明,该算法能有效地去噪滤波,显著地提高语音识别系统性能,且在不同的噪声环境和信噪比条件下具有鲁棒性。该算法计算代价小,简单易实现,适用于嵌入式语音识别系统。 As many traditional de-noising methods fail in the intensive noises environment and be unadaptable in various noisy environments,a method based on iterative Wiener filtering feature extraction is applied for acoustic signals.It frames the acoustic signals at first.Then,the iterative-renewing methods are advanced in noising spectral frequency and Signal-to-Noise ratio(SNR)of spectral power.This method is implemented in detail.The experimental results show that the proposed algorithm can filter noise from voice effectively and improve the performance of automatic speech recognition system significantly.It is proved to be robust under various noisy environments and SNR conditions.The algorithm is of low computational complexity which is suitable for embedded automatic speech recognition system application.
作者 王景芳
出处 《计算机工程与应用》 CSCD 北大核心 2011年第19期132-135,共4页 Computer Engineering and Applications
关键词 声信号 迭代维纳滤波 去噪 自适应处理 acoustic signal iterative Wiener filtering de-noising adaptive processing
  • 相关文献

参考文献18

  • 1Boll S F.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Trans ASSP, 1979,27(2) :113-120.
  • 2Berouti M, Schwartz R, Makhoul J.Enhancement of speech cor- rupted by acoustic noise[C]//Proceeding of 1979 IEEE,ICASSP, 1979:208-211.
  • 3Epharim Y, Malah D.Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator[J]. IEEE Trans Acoustic, Speech Signal Processing, 1984, 32 (6) : 1109-1121.
  • 4Lochwood P, Boundy J.Experiments with a Nonlinear Spectral Subtractor(NSS) ,hidden Markov models and projection, for ro- bust recongnition in cars[J].Speech Commun, 1992, 11 (6): 215-228.
  • 5Ephraim Y.A minimum mean square error approach for speech enhancement[J].Acoustics, Speech, and Signal Processing, 1990,2: 829-832.
  • 6Lin Zhibin, Xu Naiping.Speech enhancement based on mini- mum mean-square error short-time spectral estimation and its realization[C]//IEEE International Conference on Intelligent Pro- cessing System, 1997:1794-1797.
  • 7Martin R.Speech enhancement using MMSE short time spectral estimation with Gamma distributed speech priors[C]//Pr0c IEEE Int Conf Acoustics, Speech, Signal Processing, 2002,1 : 253-256.
  • 8Kamath S, Loizou P.A multi-band spectral subtraction method for enhancing speech corrupted by colored noise[C]//Proceed- ings of ICASSP,Orlando USA,IV-4164,2002.
  • 9Lim J S, Oppenheim A V.Enhancement and bandwidth compres- sion of noisy speech[J].Proc of the IEEE, 1979,67(12) : 1586-1604.
  • 10Gibson J D, Koo B, Gray S D.Filtering of colored noise for speech enhancement and coding[J].lEEE Trans Signal Process- ing, 1991,39: 1732-1742.

同被引文献35

  • 1王水平,唐振民,陈北京,蒋晔.复杂环境下语音增强的复平面谱减法[J].南京理工大学学报,2013,37(6):857-862. 被引量:6
  • 2李金宝,屈百达,徐宝国,周小祥.基于自适应子带功率谱熵的语音端点检测算法[J].计算机工程与应用,2007,43(12):57-58. 被引量:5
  • 3刘鹏,刘孟庵.舰船辐射噪声节拍音色特征研究[J].声学与电子工程,2007(2):4-7. 被引量:5
  • 4Karray L,Martin A.Towards improving speech detection robustness for speech recognition in adverse conditions[J].Speech Communication, 2003,40: 261-276.
  • 5Kuroiwa S,Naito M, Yamamoto S,et al.Robust speech detection method for telephone speech recognition system[J].Speech Communication, 1999,27:135-148.
  • 6Ramirez J, Segura J C,Benitez C,et al.Efficient voice activity detection algorithms using long-term speech information[J]. Speech Communication, 2004,42: 271-287.
  • 7Ramirze J, Segura J C, Benitez C, et al.An elective subband OSF-based VAD with noise reduction for robust spech recognition[J].IEEE Transactions on Speech and Audio Processing, 2005,13(6) : 1119-1129.
  • 8Nemer E, Goubran R, Mahmoud S.Robust voice activity detection using higher-order statistics in the LPC residual domain[J]. IEEE Transactions on Speech an d Audio Processing, 2001,9 (3) :217-231.
  • 9Shen J,Hung J,Lee L.Robust entropy-based endpoint detection for speech recognition in noisy environments[C]//Proceedings of International Conference on Spoken Language Processing, Sydney, Australia, 1998: 232-238.
  • 10Jia C, Xu B.An improved entropy-based endpoint detection algorithm[C]//Proceedings of International Symposium on Chinese Spoken Language Processing, Taibei, China, 2002: 285-288.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部