期刊文献+

基于置信区间与形态重构的自适应滑窗新方法

A Confidence Interval and Morphological Reconstruction based Adaptive Windowing Method
原文传递
导出
摘要 滤波滑窗的选取是SAR图像相干斑滤波的关键问题之一,从SAR图像中均匀区域的幅度和空间特性出发,提出了一种基于置信区间与形态学重构的自适应滑窗方法。首先在初始滑窗内进行强度筛选,依据初筛结果的异质程度自适应调整置信区间,得到在幅度上连续的初始自适应窗;接着以初始自适应窗为掩膜,通过空间邻接约束进行形态学重构,进一步得到在空间上连续的、形状任意的自适应滑窗。实验结果表明,与固定窗法和改进的Sigma方法相比,该方法能够获得更准确的滤波滑窗。 Filter window selection is one of the key issues in SAR image despeckling.An adaptive windowing method for speckle reduction is proposed,which is based on the combination of confidence interval and morphological reconstruction.Pixel selecting is first proceeded in a fixed window based on the radiometric confidence interval.A confidence interval is chosen adaptively according to the homogeneity facts of current window.Then a region adjacency constrain is carried out by morphological reconstruction to refine the window to a radiometric and spatial continuous window with arbitrary shape.The experiment results show that the proposed adaptive windowing method performs better speckle reduction and structure preservation than the box filter and improved Sigma filter.
作者 蒋李兵 王壮
出处 《遥感技术与应用》 CSCD 北大核心 2011年第3期315-321,共7页 Remote Sensing Technology and Application
关键词 相干斑滤波 自适应滑窗 置信区间 形态学重构 Speckle reduction Adaptive windowing Confidence interval Morphological reconstruction
  • 相关文献

参考文献11

  • 1Lopes A,Touzi R, Nezry E. Adaptive Speckle Filters and Scene Heterogeneity[J]. IEEE Transactions on Geoseienee and Remote Sensing, 1990,28(6):992-1000.
  • 2Gleich D, Dateu M. Wavelet based Despeekling of SAR Images Using Gaussian MRF[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(12):4127-4143.
  • 3D'Hondt O, Ferro-Famil L, Pottier E. Nonstationary Spatial Texture Estimation Applied to Adaptive Speckle Reduction of SAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2006,3(4) :476-480.
  • 4Walessa M,Datcu M. Model-based Despeckling and Informa tion Extraction from SAR Images[J]. IEEE Transactions on Geoseience and Remote Sensing, 2000,38 (5):2258-2269.
  • 5Wu Y,Maitre H. Smoothing Speckled SAR Images by Using Maximum Homogeneous Region Filters[J]. Optical Engineering,1992,31(8):1785-1792.
  • 6Nicolas J M,Tupin F,Maitre H. Smoothing Speckle SAR Images by Using Maximum Homogeneous Region Filters: an Improved Approach[C]//International Geoscience and Remote Sensing Symposium, 2001 : 1503-1505.
  • 7Eom I K,Kim Y S. Wavelet based Denoising with Nearly Ar bitrarily Shaped Windows[J]. IEEE Transactions on Signal Processing Letters,2004,11 (12) : 937-940.
  • 8Das A, Rangayyan R M. Adaptive Region-based Filtering of Multiplicative Noise[C]//SPIE Nonlinear Image Processing, 1997:338-348.
  • 9Fjortoft R, Lebon F, Sery F, et al. A Region based Approach to the Estimation of Local Statistics in Adaptive Speckle Filter[C]//International Geoscience and Remote Sensing Symposium, Lincoln, Nebraska, USA, 1996 : 457-459.
  • 10Lee J S, Wen J H, Ainsworth T L,et al. Improved Sigma Filter for Speckle Filtering of SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2009,47(1) : 202-213.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部