期刊文献+

非局部加权模糊C均值聚类图像分割

Non-local Weighted Fuzzy C-means for Image Segmentation
原文传递
导出
摘要 去除噪声与保持图像细节特征是含噪声图像分割中面临的一对矛盾。为此,提出一种改进的模糊C均值算法,通过引入非局部加权距离以抑制噪声影响。其中,权值通过局部图像块距离的指数形式计算,并利用半局部统计特性自适应调整其光滑参数。实验结果表明,新方法具有较强的抗噪声能力,同时能够保持较多地细节特征。 It is a difficult task to wipe out noises and keep more fine information simultaneously for FCM and its variants.In this paper,a modified fuzzy c-means method based on non-local weighted distance is presented.The non-local weighted distance is a linearly-weighted sum distance and the patch difference is used to compute the weight which measures the affinity of two pixels.In the computation of the weights,a local smooth parameter was used adaptive to the semi-local statistics.Validation studies were performed on the synthetic and real-world images with various noises,as well as MR brain images.Experiments results show that the proposed method is very robust to noise and can keep more fine structures.
出处 《模糊系统与数学》 CSCD 北大核心 2011年第3期154-162,共9页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61072118)
关键词 图像分割 模糊C均值 非局部加权距离 图像结构信息 Image Segmentation Fuzzy c-means Non-local Weighted Distance Image Structure Information
  • 相关文献

参考文献2

二级参考文献36

  • 1刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 2李云松,李明.基于灰度空间特征的模糊C均值聚类图像分割[J].计算机工程与设计,2007,28(6):1358-1360. 被引量:27
  • 3Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster[J].Journal of Cybernetics and Systems, 1973, 3(3):32-57.
  • 4Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981.
  • 5Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images [J]. IEEE Transactions on Medical Imaging, 1999, 18(9): 737-752.
  • 6Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data [J]. IEEE Transactions on Medical Imaging, 2002, 21(3): 193-199.
  • 7Chen S, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J]. IEEE Transactions on System Man and Cybernetics-Part B, 2004, 34(4) : 1907-1916.
  • 8Szilagyi L, Benyo Z, Szilagyi S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, 2003:724-726.
  • 9Cai W, Chen S, Zhang D Q. Fast and robust fuzzy C-means clustering algorithms incorporating local information for image segmentation [J]. Pattern Recognition, 2007, 40(3) : 825-838.
  • 10Szilagyi L, Szilagyi S M, Benyo Z. A modified FCM algorithm for fast segmentation of brain MR images [M] // Analysis and Design of Intelligent Systems Using Soft Computing Techniques. Heidelberg: Springer, 2007, 41: 119-127.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部