期刊文献+

基于非线性零空间的雷达一维距离像目标识别方法

Range profile recognition of radar target based on nonlinear null space
下载PDF
导出
摘要 针对雷达一维距离像样本对样本姿态角的敏感性、样本分布的非线性、样本残缺等问题,提出一种基于非线性零空间雷达目标一维距离像识别方法,通过引入核函数来处理一维距离像目标样本分布中的非线性问题,采用零空间提取最具辨别力的特征信息,最后使用支持向量机处理样本残缺问题并进行分类识别。该方法能有效解决上述问题,并最终提高雷达一维距离像的识别性能。选取3种不同飞机目标的一维距离像进行了仿真实验,识别结果表明了该方法有较高的识别正确率以及良好的抗噪性能。 In the radar target's 1-D range profile,the sample is highly sensitive to the aspect variation,the sample distribution is nonlinear,and the sample is often incomplete.The algorithm based on nonlinear null space was proposed in this paper.In this method,kernel method was used for solving nonlinear distribution of radar target's 1-D range profile,and null space was adopted to extract the most discriminated characteristic information.At the end,defective samples were handled by Support Vector Machine(SVM),so does the target's classification.The matter mentioned above can be solved by the method,and the accuracy of 1-D range profile's classification is improved.Recognition results on three different measured air-plane 1-D range profiles show the competitive classification and noise immunity performance of the proposed method.
出处 《计算机应用》 CSCD 北大核心 2011年第A01期55-57,共3页 journal of Computer Applications
关键词 支持向量机 非线性 零空间 一维距离像 目标识别 Support Vector Machine(SVM) nonlinear null space 1-D range profile target identification
  • 相关文献

参考文献11

二级参考文献39

  • 1徐培,章毓晋.基于支持向量机的高分辨距离像分类法[J].微计算机信息,2008,24(10):254-255. 被引量:2
  • 2陈小民,蒋兴舟,李鸿.基于HRR的地面雷达目标识别方法研究[J].现代雷达,2004,26(12):49-52. 被引量:5
  • 3郑宇杰,杨静宇,徐勇,於东军.一种基于Fisher鉴别极小准则的特征提取方法[J].计算机研究与发展,2006,43(7):1201-1206. 被引量:14
  • 4V Vapnik. Statistical Learning Theory[M]. New York:John Wiley & Sons Inc, 1998 : 116-200.
  • 5V N Vapnik. The nature of statistical learning theory [M]. New York:Springer-Verlag, 1995.
  • 6V Vapnik. An overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks, 1999,10 (5) :988-999.
  • 7C Cores, V Vapnik. Support Vector Networks[J]. Machine Learning, 1995,20: 273 -297.
  • 8Shaw, A. K. HRR-ATR Using Eigon-templates with Noise Observations in Unknown Target Scenario[C]. Algorithms for Synthetic Aperture Radar Imagery. Washington, SPIE, 2000.448 - 459.
  • 9Scholkopf, B. Nonlinear Component Analysis as Kernel Eigenvalue Problem[ J ]. Neural Computation, 1998, 10 (5) : 1299-1319.
  • 10Mithchell, Richard A. , John J. Wisterkamp. Robust Statistical Feature Based Aircraft Identification[J]. IEEE Transaction on Aerospace and Electronics Systems Magazine, 1999, 35(3) : 1077-1094.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部