期刊文献+

归一双向加权(2D)^2PCA的手指静脉识别方法 被引量:24

Bi-Direction Weighted (2D)^2 PCA with Eigenvalue Normalization One for Finger Vein Recognition
原文传递
导出
摘要 为快速有效地进行手指静脉识别,针对双向二维主成分分析算法降维的特点,并对该算法进行改进,提出在经过图像预处理的手指静脉图像基础上,特征值归一化并双向加权(2D)2PCA的手指静脉识别方法((OW2D)2PCA).分析了累积特征率对(2D)2PCA的影响,以及加权值、特征值归一加权值和累积特征率对W(2D)2PCA、OW(2D)2PCA、(W2D)2PCA、(OW2D)2PCA的影响.通过建立手指静脉图像库的实验结果表明,文中提出方法能够取得较好的识别效果;对(2D)2PCA提取特征向量中的冗余信息有很强的抑制作用,双向加权比单向加权效果更好;而且(OW2D)2PCA的平均识别率高于2DPCA、(2D)2PCA、W(2D)2PCA、(W2D)2PCA和OW(2D)2PCA. To carry out the finger vein recognition quickly and effectively, an algorithm of finger vein recognition is proposed according to the characteristics of bi-direction two-dimensional principal component analysis (( 2D )^2PCA) reducing the dimensions. The algorithm is bi-direction weighted (2D)^2pCA with eigenvalue normalization one ((OW2D)^2PCA) based on preprocessing image of the figure vein image. The effect of the rate of cumulate eigenvalue on (2D)^2PCA is analyzed, and the effect of the weighted value, the weighted value with eigenvalue normalization one and the rate of cumulate eigenvalue on W(2D)^2PCA,OW(2D)^2PCA, (W2D)^2PCA and (OW2D)^2PCA are analyzed as well. Experimental results on our database of finger vein images show that the presented method achieves high recognition accuracy. The redundant information of eigenvectors extracted by (2D)^2PCA is restrained strongly, and the bi-direction weighted effect is better recognition rate of (OW2D)^2PCA is higher than (W2D)^2PCA and OW(2D)^2PCA than the one direction weighted effect. The average those of 2DPCA, (2D)^2PCA, W (2D)ipcA.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第3期417-424,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60975022) 国家高技术研究发展计划项目(No.2008AA01Z148) 中央高校基本科研业务费专项资金(No.HEUCF100425)资助
关键词 手指静脉识别 双向二维主成分分析((2D)2PCA) 双向加权二维主成分分析((W2D)2PCA) 特征值归一双向加权二维主成分分析((OW2D)2PCA) Finger Vein Recognition, Bi-Direction Two Dimensional Principal Component Analysis( ( 2D )^2PCA ), Bi-Direction Weighted ( 2D ) ^2 PCA ( ( W2D ) ^2PCA), Bi-Direction Weigh-ted (2 D)^2 PCA with Eigenvalue Normalization One ( ( OW2D )^2 PC A)
  • 相关文献

参考文献12

  • 1Kono M, Ueki H, Umemura S. Near-Infrared Finger Vein Patterns for Personal Identification. Applied Optics, 2002, 41(35) : 7429 - 7436.
  • 2王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697. 被引量:32
  • 3Mulyono D, Jinn H S. A Study of Finger Vein Biometric for Personal Identification//Proc of the International Symposium on Biometrics and Security Technologies. Islamabad, Pakistan, 2008 : 136 - 143.
  • 4Dai Yanggang, Huang Beining, Li Wenxin, et al. A Method for Capturing the Finger-Vein Image Using Nonuniform Intensity Infra- red Light//Proc of the Congress on Image and Signal Processing. Sanya, China, 2008, Ⅳ : 501 -505.
  • 5余成波,秦华锋.手指静脉图像特征提取算法的研究[J].计算机工程与应用,2008,44(24):175-177. 被引量:15
  • 6Miura Naoto, Nagasaka A, Miyatake T. Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles. IEEE Trans on Information and Systems, 2007, 90(8) : 1185 -1194.
  • 7温学兵,赵江魏,梁学章.基于小波去噪和直方图模板均衡化的手指静脉图像增强[J].吉林大学学报(理学版),2008,46(2):291-292. 被引量:9
  • 8Yang Jian, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Rec- ognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131 -137.
  • 9Wang Liwei, Wang Xiao, Zhang Xuerong, et al. The Equivalence of Two Dimensional PCA and Line-Based PCA. Pattern Recognition Letters, 2005, 26 ( 1 ) : 57 - 60.
  • 10杨万扣,任明武,杨静宇.基于对称二维主成分分析的人脸识别[J].模式识别与人工智能,2008,21(3):326-331. 被引量:4

二级参考文献47

共引文献76

同被引文献119

引证文献24

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部