期刊文献+

基于IXP2850的异常流量检测模块的设计与实现

Design and implementation of anomaly flow detection block based on IXP2850
下载PDF
导出
摘要 为了解决高速网络中异常流量对节点系统的冲击而难以实时检测的问题,设计实现了一种基于网络处理器IXP2850的异常流量检测系统模块。该模块采用两个微引擎并行的方式嵌入到路由系统的流水处理中,提出了分级统计的方法来解决IXP2850可移植构架中线程交叉复杂而造成的资源冲突问题,提高了系统的吞吐量,采用用户行为距离运算和本地资源监控相结合的分析方法,对突发性流量攻击的检测在精度和反应延迟表现优于一般的采集-分析异构系统。 Abnormal traffic impact on the node system is difficult to real-time detect in the high-speed network, an anomaly flow detection module based on network processor IXP2850 is designed and implemented to solve the problem. The module is proposed to implement in two parallel microengines which embed in the routing system, and makes use of step statistical method to solve the resource conflict caused by complex multi-thread crossing in portability framework, which improves the throughput of the system. Using the comprehensive analysis of the calculation of behavior deviated from established patterns and monitor of local resources, the performance of the module is more precise and faster than the project that collection and analysis in separate systems.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第7期2221-2224,2369,共5页 Computer Engineering and Design
基金 教育部科技创新工程重大项目培育基金项目(707047)
关键词 异常流量检测 IXP2850 多线程 高速 可移植交换构架(IXA) anomaly flow detection IXP2850 multithread high performance software portability framework (IXA)
  • 相关文献

参考文献8

二级参考文献32

  • 1Hussain A , Heidemann J , Papadopoulos C. A Framework for Classifying Denial of Service Attacks//Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe, Germany, 2003
  • 2Cheng C M, Kung H T, Tan K S. Use of Spectral Analysis in Defense Against Dos Attacks//Proceedings of IEEE GLOBECOM. 2002
  • 3Alarcon Aquino V, Barria J A. Anomaly Detection in Communication Networks Using Wavelets. IEEE Proc-Commun, 2001, 148(6)
  • 4Barford P, Kline J, Plonka D, et al. A Signal Analysis of Network Traffic Anomalies//Proc. of ACM SIGCOMM Internet Measurement Workshop. Marseilles, France, November 2002: 412-423
  • 5Gao Jun, Hu Guangmin, Yao Xingmiao. Anomaly Detection of Network Traffic Based on Wavelet Packet//APCC'06. Asia-Pacific Conference on Communications. 2006
  • 6Wenke L,Xiang D. Information-Theoretic Measures for Anomaly Detection//Proc. of IEEE Symposium on Security and Privacy. Oakland,CA,May 2001 : 130-143
  • 7Lakhina A, Crovella M, Diot C. Mining Anomalies Using Traffic Feature Distributions//Proc. of ACM SIGCOMM 2005. Philadelphia,Pennsylvania, USA, August 2005 : 9-20
  • 8http://www.apng. org/9thcamp/matbdfs.ppt
  • 9Noble C C, Cook D J. Graph based Anomaly Detection//SIGK-DD '03. Washington,DC,USA,August 2003
  • 10Han Jiawei,Kamber M. Data Mining-Concepts and Techniques. Morgan Kaufmann Publishers,2000

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部