期刊文献+

自适应主动轮廓模型下的骨关节MRI快速分割 被引量:2

Fast joint MRI segmentation through an adaptive active contour
原文传递
导出
摘要 提出一种无须重新初始化的变分水平集自适应主动轮廓模型。该模型利用图像的局部特性自适应决定曲线的演化,同时加入局部C-V能量项,改进边界停止函数,提高对灰度分布重叠、分布不均匀及弱边界处理的鲁棒性,并加快了曲线演化的收敛速度。结合医学序列图像特点,利用Heaviside函数对当前截面分割结果进行分段常量化后投射至相邻界面作为初始化曲线,实现对序列图像的自动分割。最后,以骨关节磁共振图像中正常结构和病灶组织的分割实验对算法进行了验证。 Art adaptive active contour model-variational level set without re-initialization is proposed in this paper. We use local characteristics of image to implement adaptive curve evolution. Simultaneously, We add local C-V energy term and improve the edge stop function. These can increase the iterative convergence speed and make it more robust to the intensity distribution overlapping, intensity inhomogeneity and weak boundary. Combining with the characteristics of serial medical images, transform the segmentation result of current slice to piecewise constant function using the Heaviside function. Cast it to the next slice as the initial curve to implement automatic segmentation of serial images. The proposed method has been applied to segment normal structure and diseased tissue in musculoskeletal MRI with promising results.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第7期1199-1205,共7页 Journal of Image and Graphics
基金 安徽省2010高校省级自然科学研究重点项目(KJ2010A193) 教育部博士点基金项目(20060359004) 教育部留学归国人员科研启动基金项目(413117)
关键词 主动轮廓模型 水平集 自适应 局部C-V Heaviside函数 active contour model level set adaptive local C-V Heaviside function
  • 相关文献

参考文献5

二级参考文献50

  • 1郑罡,王惠南,李远禄.基于Chan-Vese模型的树形结构多相水平集图像分割算法[J].电子学报,2006,34(8):1508-1512. 被引量:19
  • 2何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 3Zhang YJ. Advances in Image and Video Segmentation. Hershey: IRM Press, 2006. 1-15.
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int'l Journal of Computer Vision, 1988,1(4):321-331.
  • 5Xu CY, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans. on Image Processing, 1998,7(3):359-369.
  • 6Adalsteinsson D, Sethian JA. A fast level set method for propagating interfaces. Computational Physics, 1995,118(2):269-277.
  • 7Chan TF, Vese LA. Active contours without edges. IEEE Trans. on Image Processing, 2001,10(2):266-277.
  • 8Li CM, Xu CY, Gui CF, Fox MD. Level set evolution without re-initialization: A new variational formulation. In: Schmid C, Soatto S, Tomasi C, eds. Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society Press, 2005.430-436.
  • 9Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(2): 158-175.
  • 10Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 1988,79( 1): 12-49.

共引文献94

同被引文献27

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部