期刊文献+

基于聚类和LOF算法的异常数据检测方法 被引量:5

下载PDF
导出
摘要 聚类可用于异常检测,但其检查结果往往是不精准的.首先通过聚类算法DBSCAN对数据进行异常分析,然后再利用LOF算法对检出的异常数据进行异常程度的分析,最终得出异常数据集.
作者 张晓
出处 《伊犁师范学院学报(自然科学版)》 2011年第2期48-50,共3页 Journal of Yili Normal University:Natural Science Edition
  • 相关文献

参考文献6

二级参考文献35

  • 1J.Han,M.Kamber.数据挖掘:概念与技术[M].北京:机械工业出版社,2000.
  • 2Pang-Ning Tan, Michael Steinbach, Vipin Kumar,编.范明,范宏建,译.数据挖掘导论[M].北京:人民邮电出版社,2006.
  • 3D.Hawkins. Identification of Outliers[M]. London: Chapman and Hall, 1980.
  • 4D Hawkins. Identification of Outliers. London: Chapman and Hall, 1980
  • 5V Barnett, T Lewis. Outliers in Statistical Data. New York: John Wiley, 1994
  • 6E Knorr, R Ng. Algorithms for mining distance-based outliers in large data sets. The 24th Int'l Conf on Very Large Data Bases. New York, 1998
  • 7S Ramaswamy, R Rastogi, K Shim. Efficient algorithms for mining outliers from large data sets. The ACM SIGMOD 2000 Int'l Conf on Management of Data, Dalles, TX, 2000
  • 8R Agrawal, P Ragaran. A linear method for deviation detection in large databases. In: Proc of the 2nd Int'l Conf on Knowledge Discovery and Data Mining. Portland, OR: AAAI Press, 1996. 164~169
  • 9M Breunig, Hans-Peter Kriegel, R Ng et al. LOF: Identifying density-based local outliers. The ACM SIGMOD 2000 Int'l Conf on Management of Data, Dalles, TX, 2000
  • 10M Ester, Hans-Peter Kriegel, J Sander et al. Incremental clustering for mining in a data warehousing environment. The 24th Int'l Conf on Very Large Data Bases, New York, 1998

共引文献52

同被引文献46

  • 1芮挺 ,沈春林 ,TIAN Qi ,丁健 .ICA与PCA特征抽取能力的比较分析[J].模式识别与人工智能,2005,18(1):124-128. 被引量:8
  • 2Q/GDW 373-2009,电力用户用电信息采集系统功能规范[S].
  • 3V Chandola, A Banerjee, V Kumar. Anomaly de-tection: A sur- vey[J]. ACM Computing Surveys,2009, 41(3) : 1-58.
  • 4S Hido, Y Tsuboi, H Kashima, et al, Statistical outlier detection using direct density ratio estimation [ J ]. Knowledge and Informa-tion Systems, 2011, 26 (2) : 309-336.
  • 5Solberg, H E and Lahti A. Detection of outliers in reference distri- butions : performance of Horn's al-gorithm [ J ]. Clinical chemistry, 2005, 15(12) : 2326-2332.
  • 6M Breunig, H Kriegel, R Ng, et al. Lof: identifying density-based local outliers[J]. Sig-mod Record, 2000, 29(2) : 93-104.
  • 7M Wainwright, T Jaakkola, A Willsky, et al. Map estimation via agreement on trees: message-passing and linear programming[ J]. IEEE Transactions on Information Theory, 2005, 51 ( 11 ) : 3697- 3717.
  • 8A Frank, A Asuncion,et al. UCI machine learning repository[ C ]. 2010.
  • 9Q/GDW 354-2012,智能电能表功能规范[S].
  • 10Song Siyang. Research on electricity consumption information collec- tion system building in the electric power marketing [ D]. Beijing: North China Electric Power University, 2011.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部