期刊文献+

基于守恒型嵌合体技术的多段翼型缝道参数分段进化优化设计研究 被引量:2

Subsection evolution optimal design of multi-element airfoil parameters based on the conservative chimera technique
下载PDF
导出
摘要 在复杂外形流场模拟的嵌合体技术中引入守恒型MFBI算法,以改进传统嵌合体技术中子域间流场信息传递不守恒的缺陷,在标准遗传算法基础上采用分段进化的方式,同时以大迎角状态下的升力系数作为设计目标,针对基础构型的前后缘缝道参数,进行了遗传优化设计。最终的设计结果表明,相较于初始构型,其最大升力系数有明显的提升,且具有良好的失速特性。同时在增升装置嵌合体流场分析和优化设计表明,所采用的守恒型嵌合体技术,在大迎角流场优化中相较于传统的非守恒格式,具有更好的精度以及收敛特性,优化结果得到了一定的提高。 A conservative algorithm MFBI is adopted during the simulation of the complex flow situation based on the conventional chimera technique and the non-conservative problem of the information exchange between different zones is conquered.To improve the lift coefficient at the large attack angle,the subsection evolution algorithm is chosen to optimize the high-lift configure parameters.Compared to the original configuration,the optimal result shows that the lift curves,as well as CLmax,are substantially improved.During the optimization design process,when compared to the non-conservative scheme,the conservative chimera technique has a better performance on numerical exactness and convergence.
作者 徐康乐 孙刚
机构地区 复旦大学
出处 《空气动力学学报》 EI CSCD 北大核心 2011年第3期374-379,共6页 Acta Aerodynamica Sinica
关键词 增升装置 遗传优化 嵌合体技术 high-lift system evolution design chimera technique
  • 相关文献

参考文献11

  • 1RAI M M. A implicit conservative zonal-boundary scheme for Euler equation calculations[ R]. AIAA 85-0488, 1985.
  • 2ABDURRAHMAN H, IBRAHIM O. Transonic airfoil design and optimisation by using vibrational genetic algorithm [ J ]. Aircraft Engineering and Aerospace Technology, 2003, 75 (4) : 350-357.
  • 3AVA SHAHROKHI, ALIRFZA JAHANG1RIAN. Airfoil shape parameterization for optimum Navier-Stokes design with genetic algorithm[ J ]. Aerospace Science and Technology, 2007, ( 11 ): 443-450.
  • 4LEE D S, GONZALEZ L F, PERIAUX J, SRIN1VAS K. Robust design optimisation using muhi-objective evolutionary algorithms[ J]. Computers & Fluids,2008, 37 : 565-583.
  • 5BORIS E, SERGEY P. Accurate CFD driven optimization of lifting surfaces for wing-body configuration[ J]. Computers & Fluid ,2007,36 : 1399-1414.
  • 6BENEK J A, STERGER J J, DOUGHERTY F C. A flexible grid embedding technique with application to the Euler equa- tions[R]. AIAA 83-19dd-CP, 1983.
  • 7BERGER M J. On conservation at grid interfaces[ J]. SIAM Journal on Numerical Analysis, 1987, 24(5) : 967-984.
  • 8TANG H S, JONES S C, SOTIROPOULOS F. An overset grid method for 3D unsteady incompressible flows[ J]. Jour- nal of Computational Physics. 2003,191:567-600.
  • 9TANG H S. Numerical simulation of unsteady three dimen- sional incompressible flows in complex geometries[ D]. Dis- sertation, Atlanta: School of Civil and Environmental Engi-neering, Georgia Institute of Technology, GA 30332-0355, 2001.
  • 10XU K L, SUN G. Assessment of an interface conservative al- gorithm MFBI in a chimera grid flow solver for multi-element airfoils[ A ]. Proceedings of the World Congress on Engi- neering 2009 Vol II[ C]. London: World Congress on Engi-neering 2009, 2009:1702-1706.

同被引文献7

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部