期刊文献+

The parametric symmetry and numbers of the entangled class of 2×M×N system 被引量:2

The parametric symmetry and numbers of the entangled class of 2×M×N system
原文传递
导出
摘要 We present in the work two intriguing results in the entanglement classification of a pure and true tripartite entangled state of 2 × M × N under stochastic local operation and classical communication: (i) the internal symmetric properties of the nonlocal parameters in the continuous entangled class; (ii) the analytic expression for the total numbers of the true and pure entangled class 2 × M × N states. These properties help better understand the nature of the 2 × M × N entangled system. We present in the work two intriguing results in the entanglement classification of a pure and true tripartite entangled state of 2 × M × N under stochastic local operation and classical communication: (i) the internal symmetric properties of the nonlocal parameters in the continuous entangled class; (ii) the analytic expression for the total numbers of the true and pure entangled class 2 × M × N states. These properties help better understand the nature of the 2 × M × N entangled system.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1471-1475,共5页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 10935012, 10928510, 10821063 and 10775179) the Chinese Academy of Sciences Key Projects (Grant Nos. KJCX2-yw-N29 andH92A0200S2) the Scientific Research Fund of Graduate University, the Chinese Academy of Sciences
关键词 ENTANGLEMENT quantum information matrix theory 对称性质 纠缠态 系统 和数 解析表达式 局部参数
  • 相关文献

参考文献13

  • 1程硕,李军利,乔从丰.2×5×5纯态量子体系完全纠缠态的分类[J].中国科学院研究生院学报,2009,26(3):303-309. 被引量:1
  • 2DI YaoMin,LIU SiPing,LIU DongDong.Entanglement for a two-parameter class of states in a high-dimension bipartite quantum system[J].Science China(Physics,Mechanics & Astronomy),2010,53(10):1868-1872. 被引量:7
  • 3DING ShengChao1,3 & JIN Zhi1,2,1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100080,China,2 Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China,3 Graduate University of Chinese Academy of Sciences,Beijing 100080,China.Review on the study of entanglement in quantum computation speedup[J].Chinese Science Bulletin,2007,52(16):2161-2166. 被引量:35
  • 4Cornelio M F,de Toledo Piza A F R.Classification of tripartite entangle-ment with one qubit[].Physical Review A Atomic Molecular and Optical Physics.2006
  • 5Cheng S,Li J L,Qiao C F.Classification of the Entangled States of2×N×N[].J Phys A-Math Theor.2010
  • 6Li J L,Qiao C F.Classification of the entangled states2×M×N[]..
  • 7Chitambar E,Miller C A,Shi Y Y.Matrix pencils and entanglement clas-sification[].Journal of Mathematical Physics.2010
  • 8Chitambar E,Miller C A,Shi Y Y.Comment on"Matrix pencils andentanglement classification"[]..
  • 9Sloane N J A.The on-line encyclopedia of integer sequences[].wwwresearchattcom/?njas/sequences/.2008
  • 10Horodecki R,Horodecki P,Horodecki M,Horodecki K.Quantum Entanglement[].Reviews of Modern Physics.2009

二级参考文献32

共引文献40

同被引文献25

  • 1DI YaoMin,LIU SiPing,LIU DongDong.Entanglement for a two-parameter class of states in a high-dimension bipartite quantum system[J].Science China(Physics,Mechanics & Astronomy),2010,53(10):1868-1872. 被引量:7
  • 2Bennett C H, Brassard G, Cr6peau C, et al. Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels [ J 1. Physical Review Letters, 1993, 70(13) : 1 895-1 899.
  • 3Bennett C H, Wiesner S J. Communication via one- and two- particle operators on Einstein-Podolsky-Rosen states [ J ]. Physical Review Letters, 1992, 69(20) : 2 881-2 884.
  • 4Mattle K, Weinfurter H, Kwiat P G. Dense coding in experimental quantum communication J]. Physical Review Letters, 1996, 76(25): 4 656-4 659.
  • 5Ekert A K. Quantum cryptography based on Bell' s theorem [J]. Physical Review Letters, 1991, 67(6) : 661-663.
  • 6Dur W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalent ways [ J ]. Physical Review A, 2000, 62 (6) : 062314.
  • 7Bastin T, Krins S, Mathonet P, et al. Operational families of entanglement classes for symmetric N-qubit states [ J ]. Physical Review Letters, 2009, 103 (7) : 070503.
  • 8Verstraete F, Dehaene J, De Moor B, et al. Four qubits can be entangled in nine different ways [ J]. Physical Review A, 2002, 65(5) : 052112.
  • 9Osterloh A, Siewert J. Constructing N-qubit entanglement monotones from antilinear operators [ J]. Physical Review A, 2005, 72(1): 012337.
  • 10Osterloh A, Siewert J. Entanglement monotones and maximally entangled states in muhipartite qubit systems [ J]. International Journal of Quantum Information, 2006, 4 (3) : 531-540.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部