期刊文献+

基于双四杆机构的蟑螂机器人设计与分析 被引量:7

Mechanism Design and Analysis of Cockroach Robot Based on Double Four-bar Linkage
下载PDF
导出
摘要 针对蟑螂机器人直接串联式腿构形承载能力差、机体刚度不能满足要求,以及单腿少于3自由度构形不能精确控制机体位姿的问题,设计一种基于双四杆机构的仿生蟑螂机器人。对机器人求运动学逆解,求得各个驱动关节转角;对机器人进行静力学分析,通过解析法得到关节驱动电动机所需的驱动转矩;用可视化的方法对机构的工作空间进行分析,同时提出快速工作空间与越障工作空间的概念来衡量机器人的平面运动性能与越障性能;制作样机进行行走试验。通过与直接串联构形的比较可知,新设计的样机不仅提高了移动速度,同时增加了系统承载能力,验证了上述设计的合理性与可行性。 A bionic cockroach robot based on the double four-bar linkage is designed,which can solve the problem that the robot based on the directly serial leg mechanism has weak bearing capacity and rigidity,as well as the position and orientation of the robot cannot be controlled accurately if the degree of freedom(DOF) of one leg is less than three.The inverse kinematics is solved in order to obtain the position of the driven joint.Then,the statics analysis of the robot is carried out,from which the driving torque needed by the joint driven motor is obtained.A visual method is used to analyze the workspace of the mechanism.Two concepts,the fast workspace and obstacle-cross workspace,are proposed to measure the planar motion performance and obstacle-surmounting performance of the robot.Finally a prototype is fabricated for walking test.Compared with the robot based on the directly serial mechanism,the newly designed prototype not only increases the moving speed,but also strengthens the bearing capacity,thus verifying the rationality and feasibility of the above-mentioned design.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第11期14-22,共9页 Journal of Mechanical Engineering
基金 国家高技术研究发展计划(863计划 2008AA04Z210) 国家自然科学基金(60775059) 北京市自然科学基金(3093021)资助项目
关键词 蟑螂机器人 四杆机构 运动学 静力学 工作空间 Cockroach robot Four-bar linkage Kinematics Statics Workspace
  • 相关文献

参考文献5

二级参考文献50

  • 1唐粲,超贠,栾胜.一种新型医疗机器人运动学及灵活性分析[J].北京航空航天大学学报,2005,31(7):748-752. 被引量:16
  • 2卢振利,马书根,李斌,王越超.基于循环抑制CPG模型的蛇形机器人控制器[J].机械工程学报,2006,42(5):137-143. 被引量:10
  • 3韩宝玲,王秋丽,罗庆生.六足仿生步行机器人足端工作空间和灵活度研究[J].机械设计与研究,2006,22(4):10-12. 被引量:22
  • 4DELCOMYN F. Neural basis of rhythmic behavior in animals[J]. Science, 1980, 210(4469): 492-498.
  • 5KIMURA H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. The International Journal of Robotics Research, 2007, 26(5): 475-490.
  • 6SHINKICHI I, HIDEO Y, TAMIO A. CPG model for autonomous decentralized multi-legged robot system generation and transition of oscillation patterns and dynamics of oscillators[J]. Robotics and Autonomous Systems, 2003, 44(3): 171-179.
  • 7LEWIS M A, TENORE F, ETIENNE C R. CPG design using inhibitory networks[C]//IEEE International Conference on Robotics and Automation, April 18-22, 2005, Barcelona, Spain. United States: IEEE, 2005: 3 682-3 687.
  • 8MATSUOKA K. Mechanisms of frequency and pattern control in the neural rhythm generators[J]. Biological Cybernetics, 1987, 56(2): 345-353.
  • 9VENKATARAMAN S T. A simple legged locomotion gait model[J]. Robotics and Autonomous Systems, 1997, 22(1): 75-85.
  • 10KIMURA H, FUKUOKA Y. Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot tekken[C]/flntema- tional Conference on Intelligent Robots and Systems, September 28-October 2, 2004, Sendai, Japan. Monographie.. IEEE, 2004: 986-992.

共引文献61

同被引文献49

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部