期刊文献+

RGD多肽对MSCs在壳聚糖/羟基磷灰石支架上黏附行为的调控 被引量:1

Regulation of RGD peptide for adhesion behavior of MSCs on the CS/HA scaffolds
下载PDF
导出
摘要 目的研究RGD多肽修饰CS/HA复合多孔支架对于MSCs在支架上黏附的数量及质量。方法通过原位杂化法制备CS/HA多孔支架并应用物理吸附的方法将RGD多肽负载到支架表面制备出CS/HA-RGD复合支架并对其表征。分别将从Wistar大鼠提取并培养的MSCs种植到实验组CS/HA-RGD及对照组CS/HA两种支架各10个进行复合培养。4 h后检测其黏附率,3天后应用扫描电镜及激光共聚焦显微镜观察细胞黏附状态。结果 X射线光电子能谱(XPS)及吸光度法测定RGD的负载率为67%。应用电镜测得支架的大孔道的直径约为400μm,而小孔径为3~5μm。应用酶标仪测定两种支架4 h的骨髓基质干细胞的黏附率,负载RGD组为(80.7±1.8)%而无RGD组为(54.7±2.6)%。继续培养3天后应用激光共聚焦显微镜及扫描电镜观察,负载RGD组明显提高了MSCs的黏附数量和质量。结论 RGD多肽具有促进MSCs在短时间内迅速黏附CS/HA复合多孔支架作用。 Objective To study the regulation of RGD for chitosan/hydroxyapatite(CS/HA) scaffold with channel/spherical pore in order to detect cell adhesion rate and quality on scaffold.Methods The CS/HA scaffold was prepared via in situ hybridization.Physical adsorption method was applied to load RGD peptide on the stent surface,CS/HA-RGD scaffolds was prepared and marked.MSCs extracted and cultured from Wistar rats were planted to the experimental group CS/HA-RGD(n=10) and control group CS/HA(n=10) and given combined cultivation.After 4 h,the adhesion rate was detected,after 3 days scanning electron microscopy and laser confocal microscopy were applied to observe cell adhesion status.Results The load rate of RGD on the scaffold was 67% detected by XPS and absorption spectrophotometry.The size of channel pore and sphere pore of CS/HS scaffold were about 400 μm and 3~5 μm,respectively.Cell adhesion rate of CS/HA scaffold with RGD were(80.7±1.8)% after 4 h cultivation,which were higher than that of CS/HA group(54.7±2.6)%.The quantity and quality of adhesion of MSCs on RGD-load scaffold were significantly increased.Conclusion RGD peptides can promote adhesion of MSCs on CS/HA combined scaffold in a short time.
出处 《哈尔滨医科大学学报》 CAS 北大核心 2011年第3期199-202,共4页 Journal of Harbin Medical University
基金 国家自然科学基金资助项目(50702017 302672126)
关键词 壳聚糖 羟基磷灰石 RGD多肽 多孔支架 chitosan hydroxyapatite RGD peptide porosity scaffold
  • 相关文献

参考文献2

二级参考文献14

  • 1Chang B. S. , Lee C. K. , Hong K. S. et al.. Biomaterials[J], 2000, 21:1291-1298
  • 2Lee J. Y. , Nam S. H., Im S. Y. et al.. Journal of Controlled Release[J], 2002, 78(1-3): 187-197
  • 3LiP. J.. J. Biomed Mater. Res.[J], 2003, 66:79-85
  • 4Yamaguchi I. , Tokuchi K. , Fuzuzaki H. et al.. J. Biomed Mater. Res. [J], 2001, 55:20-57
  • 5Sivakumar K. , Manjubala I. , Rao Panduranga K.. Carbohydrate Polymer[J], 2002, 49:281-288
  • 6Menon P. R. , Napper S. A. , Mukherjee D. P.. Proceeding of the 1995 Fourteenth Southern Biomedical Engineering Conference[C], Shreveport, Louisiana, Apirl 1995:95-97
  • 7ZhangY., ZhangM. Q.. J. BiomedMater. Res.[J], 2001, 55(3): 304-312
  • 8Spence M. L. , McCord M. G.. Proceeding of the 1997 Sixteenth Southern Biomedical Engineering Conference[C], Biloxi M S:April, 1997:257-259
  • 9Maclachlan M. J., Manners I., Ozin G. A.. Advance materials[J], 2000, 12(9): 675-681
  • 10Viala S. , Freche M. , Lacout J. L.. Ann. Chim. Sci. Mat. [J], 1998, 23(1-2): 69-72

共引文献40

同被引文献22

  • 1何曼君,张红东,陈维孝,等.高分子物理[M].3版.上海:复旦大学出版社,2009.
  • 2Monti S, Alderighi M, Duce C, et al. Adsorption of ionic peptides on inorganic supports[J]. J Phys Chem C, 2009, 113 (6): 2433-2442. DOI: 10.1021/jp809297c.
  • 3Park JH, Schwartz Z, Olivares-Navarrete R, et al. Enhancement of surface wettability via the modification of microtextured titanium implant surfaces with polyelectrolytes [J]. Langmuir, 2011, 27(10): 5976-5985. DOI: 10.1021/ la2000415.
  • 4Teshima K, Wagata H, Sakurai K, et al. High-quality ultralong hydroxyapatite nanowhiskers grown directly on titanium surfaces by novel low-temperature flux coating method[J]. Cryst Growth Des, 2012, 12(10): 4890-4896. DOI: 10.1021/ cg3007469.
  • 5Liu ST, Chen LJ, Tan L, et al. A high efficiency approach for a titanium surface antifouling modification: PEG-o-quinone linked with titanium via electron transfer process[J]. J Mater Chem B, 2014, 2(39): 6758-6766. DOI: 10.1039/c4tb01014k.
  • 6Ren X, Wu Y, Cheng Y, et al. Fibroneetin and bone morphogenetic protein- 2- decorated poly(OEGMA- r- HEMA) brushes promote osseointegration of titanium surfaces[J]. Langrnuir, 2011, 27(19): 12069-12073. DOI: 10.1021/ la202438u.
  • 7Groll J, Fiedler J, Engelhard E, et al. A novel star PEG- derived surface coating for specific cell adhesion[J]. J Biomed Mater Res A, 2005, 74(4): 607-617. DOI: 10.1002/jbm. a.30335.
  • 8Khoo X, Hamilton P, O'Toole GA, et al. Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal[J]. J Am Chem Soe, 2009, 131(31): 10992-10997. DOI: 10.1021/ja9020827.
  • 9Meyers SR, Grinstaff MW. Biocompatible and bioaetive surface modifications for prolonged in vivo efficacy[J]. Chem Rev, 2012, 112(3): 1615-1632. DOI: 10.1021/cr2000916.
  • 10Neoh KG, Kang ET. Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications[J]. ACS Appl Mater Interfaces, 2011, 3(8): 2808-2819. DOI: 10.1021/am200646t.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部