期刊文献+

改进的分层定性空间表示和推理方法 被引量:1

Improved hierarchical qualitative spatial representation and reasoning approach
下载PDF
导出
摘要 针对李三江和Bernhard提出的一种分层定性空间表示与推理方法,在固定分辨率的情况下,就该方法关于两个粗区域间关系的表示和推理进行了扩展,特别分析了粗区域下近似为零情况的推理问题,完善了确定两个粗区域间RCC5关系的定理。本文的改进方法还可用于其他RCC关系理论。 A hierarchical qualitative spatial representation and reasoning approach was proposed by Sanjiang Li and Bernhard Nobel. In this article, under fixed resolution, we expand and complement this spatial representation and reasoning approach to determine the mereological (part/whole) relations between two rough regions. In particular, we discuss reasoning issue when the lower approximation is zero. We complete the theorem which determines the definite RCC5 relation between the two rough regions. The improved approach can also applied to other RCC relation theories.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第4期1041-1046,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60973088 60773099)
关键词 人工智能 定性空间推理 分层空间模型 广义区域关系演算 分辨率 粗区域 artificial intelligence qualitative spatial reasoning hierarchical spatial model generalized region connection calculus resolution rough regions
  • 相关文献

参考文献8

  • 1Preparata F P,Shamos M I. Computational Geome- try: an Introduction [ M]. New York: Springer, 1993 : 19-53.
  • 2Jahne B, Haussecker H, Geissler P, et al. Hand- book of Computer Vision and Applications [M]. New York: Academic Press, 1999:21-46.
  • 3Timpf S, Frank A U. Using hierarchical spatial data structures for hierarchical spatial reasoning [C]// Lecture Notes in Computer Science, 1997,1329 : 69- 83.
  • 4Winter S. Topological relations in hierarchical parti- tions[C]//International Conference on Spatial Infor-marion Theory: Cognitive and Computational Foun- dations of Geographic Information Science, Stade, Germany, Berlin: Springer, 1999: 235-250.
  • 5Worboys M F. Imprecision in finite resolution spa- tial ctata[J]. GeoInformatica, 1998, 2(3) :257-279.
  • 6Stell J G, Worboys M F. Stratified map spaces: a formal basis for multi-resolution spatial databases [J]. International Symposium on Spatial Data Han- dling, 1998: 180-189.
  • 7Li S, Ying M. Generalized region connection calcu- lus[J]. Artificial Intelligence, 2004, 160(1) : 1-34.
  • 8Li S, Bernhard N. Qualitative spatial representation and reasoning., a hierarchical approach [J]. The Computer Journal, 2007, 50(4) :391-402.

同被引文献16

  • 1许小满,孙雨耕,杨山,黄汝激.超图理论及其应用[J].电子学报,1994,22(8):65-72. 被引量:32
  • 2Mendoncga M,Arruda LVR,Neves F,Autonomousnavigation system using event driven-fuzzy cognitive maps[J].Applied Intelligence,2012,37(2):175-188.
  • 3Mossakowski T,Moratz R.Qualitative reasoning aboutrelative direction of oriented points[J].ArtificialIntelligence,2012,180-181:34-45.
  • 4Randell D A,Landini G,Galton A.Discrete mereotopologyfor spatial reasoning in automated histological image analysis[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2013,35(3):568-581.
  • 5Cohn A G,Renz J.Qualitative spatial representation andreasoning[J].Handbook of Knowledge Representation,2008,3:551-596.
  • 6Randell D A,Cui Zhan,Cohn A G.A spatial logic based onregions and connection[C]//Proceedings 3RD InternationalConference on Knowledge Representation and Reasoning.Massachusetts,USA:DBLP,1992:165-176.
  • 7Clarke B L.A calculus of individuals based on connection[J].Notre Dame Journal of Formal Logic,1981,22(3):204-219.
  • 8Egenhofer M J,Franzosa R D.Point-set topological spatialrelations[J].International Journal of Geographical Informa-tion System,1991,5(2);161-174.
  • 9Li Sanjiang,Nebel B.Qualitative spatial representation andreasoning:A hierarchical approach[J].The ComputerJournal,2007,50(4):391-402.
  • 10Nagurney A.Supernetworks:An introduction to the conceptand its applications with a specific focus on knowledge super-networks[D].Massachusetts:University of Massachusetts Amherst,2005.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部