期刊文献+

STR—PCR检测唐氏综合征额外21号染色体亲源性及不分离时期 被引量:1

Identification of Parental Origin and Meiotic Stage of Nondisjunction in Down Syndrome by STR-PCR Analysis
下载PDF
导出
摘要 目的应用短串联重复序列-聚合酶链反应(STR—PCR)方法对唐氏综合征的顿外21号染色体的亲源性及不分离时期进行判定,初步探讨唐氏综合征的发病机制。方法2003-2004年收集来自广州地区的10个唐氏综合征患者及其父母共30人,选取21号染色体上唐氏综合征致病关键区域(DSCR)内部及其附近的3个STR位点(D21S11,D21S1412,D21S1411)对其分别进行检测。结果在10个唐氏综合征患者中,除2个因位点纯舍或父母子三方扩增片段大小相同而不能判断外,8个患者确定了额外21号染色体的亲源性,均为母源性的,其中7个发生在减数分裂I(MI)期,1个发生在减数分裂II(MII)期。结论STR—PCR方法能确定大多数唐氏综合征患者额外染色体的亲源性及不分离时期。多数唐氏综合征患者的额外21号染色体源于母源性减数分裂I(MI)期的不分离,母亲高龄是唐氏综合征发病的一个高发因素。 Objective To identify the parental origin of the extra chromosomes,as well as the stage of nondisjunction by STR-PCR,so as to investigate the etiology of Down syndrome. Methods In 2003-2004, 10 patients with Down syndrome and their parents from Guangzhou were detected by STR-PCR with D21S11 ,D21S1412 and D21S1411 ,which was within or near the Down syndrome critical region (DSCR). Results Of the 10 cases Down syndrome patients,parental origin was maternal in 8 cases,of which 7 derived from the nondisjunction in the meiotic I (MI) period, 1 occurred in meiotic II (MII) period. Conclusion STR-PCR technique could effectively identify the parental origin of extra chromosome and the stage of nondisjunction in Down syndrome patients. The majority of Down syndrome is from the maternal nondisjunction in meiotic I (MI) period,and advanced maternal age is one of the important factors.
出处 《现代检验医学杂志》 CAS 2011年第3期12-14,共3页 Journal of Modern Laboratory Medicine
基金 基金项目:广州市科技攻关重大项目课题(2004E1-E0013).
关键词 唐氏综合征 减数分裂不分离 短串联重复序列 down syndrome meiotic nondisjunction short tandem repeat
  • 相关文献

参考文献12

  • 1Hassold T,Abruzzo M,Adkins K,et al. Human aneu- ploidy., incidence, origin, and etiology [J]. Environ Mol Mutagen,1996,28(3):167-175.
  • 2Newberger DS. Down syndrome :prenatal risk assess- ment and diagnosis[J]. Am Faro Physician, 2000,62 (4) :825-832,837-838.
  • 3The Utah Marker Development Group. A collection of ordered tetranucleotide-repeat markers from the human genome[J]. Am J Hum Genet, 1995,57 (3) : 619-628.
  • 4Freeman SB,Allen EG ,Oxford-Wright CL ,et al. The National Down Syndrome Project ..design and imple- mentation[J]. Public Health Rep, 2007,122 (1): 62- 72.
  • 5Sherman SL, Freeman SB, Allen EG, et al. Risk fac- tors for nondisjunction of trisomy 21[J]. Cytogenet Genome Res, 2005,111 (3-4) : 273-280.
  • 6Hochwagen A, Tham WH, Brar GA, et al. The FK 506 binding protein Fpr3 counteracts protein phos- phatase 1 to maintain meiotic recombination check- point activity[J]. Cell, 2005,122(6): 861-873.
  • 7Homer HA,McDougall A,Levasseur M,et al. Mad2 prevents aneuploidy and premature proteolysis of cy- clin B and securin during meiosis I in mouse oocytes [J]. Genes Dev, 2005,19 (2) : 202-207.
  • 8Allen EG, Freeman SB, Druschel C, et al. Maternal age and risk for trisomy 21 assessed by the origin of chromosome nondisjunctionz a report from the At- lanta and National Down Syndrome Projects [J]. Hum Genet, 2009,125 (1) : 41-52.
  • 9Ramirez NJ,Belalctlzar HM,Yunis JJ,et al. Parental origin, nondisjunction,and recombination of the extra chromosome 21 in Down syndrome :a study in a sam- ple of the colombian population[J]. Biomedica, 2007, 27(1):141-148.
  • 10Brown AS, Feingold E, Broman KW, et al. Genome- wide variation in recombination in female meiosis:a risk factor for non-disjunction of chromosome 21 [J]. Hum Mol Genet,2000,9(4)~515-523.

同被引文献26

  • 1Jenderny J. Chromosome aberrations in a large series of sponta- neous miscarriages in the German population and review of the literature[ J]. Mol Cytogenet, 2014,7 ( 38 ) : 1-9. DOI : 10. 1186/1755-8166-7-38.
  • 2Treff NR, Su J, Taylor D, et al. Te|omere DNA deficiency is associated with development of human embryonic aneuploidy [J]. PLoS Genet, 2011,7(6):1-10. DOI:10. 1371/jour- nal. pgen. 1002161.
  • 3Ghesh S, Feingold E, Chakraborty S, et al. Telomere length is associated with types of chromosome 21 nondisjunction: a new insight into the maternal age effect on Down syndrome birth [ J ]. Hum Genet, 2010, 127 ( 4 ) : 403-409. DOI: 10. 1007/ s00439 -009-0785 -8.
  • 4Kline J, Kinney A, Reuss ML. Trisomic pregnancy and the oo- cyte pool [ J]. Human Reproduction, 2004, 19 (7) : 1633- 1643.
  • 5Duncan FE, Homick JE, Lampson MA, et al. Lampson MA Chromosome cohesion decreases in human eggs with advanced maternal age[J]. Aging cell, 2012,11 (6): 1121-1124. DOI : 10,1111/j. 1474-9726. 2012. 00866.
  • 6Gianaroli L, Magli MC, Cavallin G, et al. Predicting aneu- ploidy in human oocytes: key factors which affect the meiotic process [ J ]. Human Reproduction, 2010, 25 ( 9 ) : 2374- 2386. DOI: 10. 1093/humrep/deq123.
  • 7Jeffreys CA, Burrage PS, Bickel SE. A model system for in- creased meiotic nondisjunction in older oocytes [ J ]. Curr Biol, 2003,13 ( 6 ) : 498-503.
  • 8Ganlden ME. Maternal age effect: the enigma of Down syn- drome and other trisomic conditions[ J]. Mutat Res, 1992, 296(1-2) :69-88.
  • 9Fu X, Cheng J, Hou Y, et al. The association between the o- ocyte pool and aneuploidy : a comparative study of the reproduc- tive potential of young and aged mice [ J ]. J Assist ReprodGen- et, 2014,31(3):323-331. DOI:10. 1007/s10815-013-0160-5.
  • 10Ford JH. Reduced quality and accelerated follicle loss with fe- male reproductive aging- does decline in thecadehydroepiandros- terone (DHEA) underlie the problem [ J ] ? Ford J Biom Sci, 2013,20 (93) : 1-9. DOI : 10,1186/1423-0127-20-93.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部