期刊文献+

基于直接LDA的人脸识别方法研究 被引量:3

A Research of Face Recognition Based on Direct LDA
下载PDF
导出
摘要 为了研究加权的类间离散度矩阵对人脸识别率的影响以及寻找影响识别率的因素,分别采用零空间投影法和非零空间投影法直接求解Fisher准则线性判别问题。零空间投影保留最具判别能力的样本类内离散度矩阵的零空间,非零空间投影保留样本类间离散度矩阵的非零空间,两种方法都很好地避免了高维小样本问题。通过对Yale人脸库的图像进行试验,结果表明类内离散度矩阵的零空间投影法要优于类间离散度矩阵的非零空间投影法,而加权值修正对识别率的影响并不明显,它的应用是有一定前提条件的。 The zero space projection and non-zero space projection are two kinds of method that can directly solve linear discriminative analysis problem.Both methods were adopted to study the effect of the weighted between-class scatter matrix on the face recognition,in order to explore the factors affecting the recognition rate.The zero space projection method reserves the zero space of within-class scatter matrix which has the most discriminate ability.The non-zero space projection method reserves the non-zero space of the between-class scatter matrix.The two methods can avoid the problem of high-dimensional small sample.Through the experiments tested in the Yale face database,we can see that the result of zero space projection is superior to the result of non-zero space projection.And the method of weighted between-class scatter matrix can not significantly improve recognition rate,so its application needs certain preconditions.
出处 《北京石油化工学院学报》 2011年第2期39-43,共5页 Journal of Beijing Institute of Petrochemical Technology
关键词 线性判别分析 样本类间离散度 样本类内离散度 人脸识别 linear discriminant analysis between-class scatter within-class scatter face recognition
  • 相关文献

参考文献19

  • 1Brunelli R, Poggio T. Face recognition: Feature versus templates[J].IEEE Trans. on patter Analysis and Machine Intelligence, 1993,15 ( 10 ) : 1042-1052.
  • 2HuangC L,ChenCW. Human facial featureex traction for face interpretation [J].Pattern Recognition, 1992,25(12) : 14,35 144,1.
  • 3山世光,高文,陈熙霖.基于纹理分布和变形模板的面部特征提取[J].软件学报,2001,12(4):570-577. 被引量:53
  • 4Kirby M, Sirovich human faces [J]. IEEE Trans. On Analysis and Machine Intelligence, 1990, 12(1):103-108.
  • 5Kohenen, Self organization and associalive memory[M ]. New York: Springer Verlag, 1988.
  • 6l.in S H, Kung S Y, I.in I. J. Face recognition// detection by Probabilistic Decision-base neural network[J]. IEEE Transactions on NeuralNetworks, 1997,8(1) :114-132.
  • 7Comes C, Vapnik V. Support vector network [J]. Machine Learning,1995(20):711-720.
  • 8Turk M, Pentland A. Eigenfaees for recognition [J]. Cognitive Neuroscience, 1991,3(1) :71-86.
  • 9Bartlett M S, Movellan J R, Ejnowski T J. Face recognition by independent Component analysis [J]. IEEE Trans actions On Neural Networks, 2002,13(6) :1450-1464.
  • 10Swets D L and Weng J Y, Using Discriminant Eigenfeatures for Image Retrieval [J].IEEE Trans. onPAMI, 1996,18:831-836.

二级参考文献34

  • 1刘明宝.人脸检测与跟踪的研究:博士学位论文[M].哈尔滨:哈尔滨工业大学,1997..
  • 2Belhumenr P N,Hespanha J P,Kriegman D J.Eigenfaces v.s.Fisherface:Recognition Using Class Specific Linear Projection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3Yu Hua,Yang Jie.A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition[J].Pattern Recognition,2001,34(10):2067-2070.
  • 4Fen Chena,Hong Yuan.A New LDA-based Recognition System Which Can Solve the Small Sample Size Problem[J].Pattern Recognition,2000,33(10):1713-1726.
  • 5Lu Wei,Plataniotis K N.Venetsanopoulos A N.Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition[J].Pattern Recognition,2005.26(2):181-191.
  • 6KRZANOWSKI W J, JONATHAN P, MCCARTHY W V, et al. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data [J]. Applied Statistics, 1995, 44(11): 101 - 115.
  • 7YU Hua, YANG Jie. A direct LDA algorithm for high- dimensional data-with application to face recognition [J]. Pattern Recognition,2001,34(10) : 2067 - 2070.
  • 8LU J, PLATANIOTIS K N, VENETSANOPOULOS A N. Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition [J]. Pattern Recognition Letters, 2005, 26(2): 181-191.
  • 9ZHENG Yu-Jie, GUO Zhi-Bo, YANG Jian, et al. DLDA/QR: a robust direct LDA algorithm for face recognition and its theoretical foundation [J]. Lecture Notes in Computer Science, 2007, 4426: 379 - 387.
  • 10HUANG R, LIU Q, LU H, et al. Solving the small sample size problem of LDA [C]// Proceedings of International Conference on Pattern Recognition. USA:IEEE, 2002, 3: 29 - 32.

共引文献95

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部