期刊文献+

三维散乱点云模型的特征点检测 被引量:38

Feature Point Detection for 3D Scattered Point Cloud Model
下载PDF
导出
摘要 随着三维点云模型越来越受到人们的关注,如何对数据量大,无序的三维点云模型进行特征点检测也是近几年的研究热点。本文提出了基于曲率和密度的特征点检测算法,为每个数据点定义一个特征参数,这个参数由三部分组成:点到邻居点的平均距离;点的法向与邻居点法向夹角的和;数据点曲率。然后通过八叉树方法计算模型的数据点密度,将这个密度与模型到中心点的最大距离相除得到特征阈值,特征参数大于阈值的点就是特征点。本文计算时,检测模型的特征点只需用到三维点云模型的几何特征,如数据点法向,曲率和邻居点。实例表明本算法可准确地检测出散乱数据点云的特征点。 3D point cloud data have received great attention,and feature detection of the unordered and the large mount point data is hot topic for the recent years.We presented a feature point detection algorithm based curvature and density.Firstly,feature parameter of each point is calculated.The parameter includes three parts;the average distance of the neighboring points,the sum of the normal angle between the point and its neighboring points,and the data point curvature.Secondly,by using Octree we define the density of data,which is then divided by the maximum distance from model center to data points and applied as the feature threshold to determine the feature points.The feature points are recognized when its density parameter is bigger than the threshold.In this article,we only use the geometry properties,such as normal of point,curvature and the neighboring points to detect the feature points.The experimental results show that our new approach can detect accurately the feature poinst for 3D scattered point data cloud models.
出处 《信号处理》 CSCD 北大核心 2011年第6期932-938,共7页 Journal of Signal Processing
基金 北京市优博项目(YB20081000401) 国家973计划(2006CB303105 2004CB318110) 国家自然科学基金项目(NO.60673109)
关键词 三维点云模型 特征参数 特征点检测 K近邻 three-dimension point cloud model feature parameter feature point detection k nearest neighbors
  • 相关文献

参考文献11

  • 1Shin Yoshizawa, Alexander Belyaev, Hans Peter Seidel. Fast and robust detection of crest lines on meshes [ C ]. In Proc. Symposium on Solid and physical modeling, 2005: 227-232.
  • 2Yutaka Ohtake, Alexander Belyaev, Hans-Peter Seidel. Ridge-valley lines on meshes via implicit surface fitting [ J ]. ACM Transactions Graphics, 2004, 23 ( 3 ) : 609- 612.
  • 3Charlie C L, Wang,. Bilateral recovering of sharp edges on feature-insensitive sampled meshes [ J ]. IEEE Transac- tions on Visualization and Computer Graphics, 2006, 12(4) :629-639.
  • 4Yang Yongliang, I_ai Yukun, Hu Shimin, and Helmut Pott- mann. Robust principal curvatures on multiple scales[ C]. In Proc. Symposium on Geometry Processing, 2006: 223-226.
  • 5Gatzke T, Grimm C. Feature detection using curvature maps and the rain-cut/max-flow algorithmiC], In Proc. Geomet- ric Modeling and Processing, 2006, 578-584.
  • 6Huang Jianbing, Menq Chia-Hsiang H. Automatic data seg- mentation for geometric feature extraction from unorganized 3-D coordinate points[ J]. IEEE Robotics and Automation Society, 2001, 17(3) :268-279.
  • 7Kris Demarsin, Denis Vanderstraeten, Tim Volodine, and Dirk Roose. Detection of closed sharp edges in point clouds using normal estimation and graph theory [ J ]. Compute. Aided Design, 2007, 39(4) :276-283.
  • 8黄文明,彭希为,温佩芝,吴晓军.保留几何特征的散乱点云简化方法[J].计算机工程与应用,2009,45(28):168-170. 被引量:4
  • 9Hoppe H, DeRose T, Duchamp T, McDonald J, and Stu- etzle W. Surface reconstruction from unorganized points [ C ]. Computer Graphics Proceedings. ACM SIGGRAPH, 1992: 71-78.
  • 10Pauly M, Gross M, Kobbelt L. Efficient simplification of point-sampled surfaces [ J ]. IEEE Visualization, 2002 : 163-170.

二级参考文献8

  • 1Pauly M,Gross M,Kobbeh L P.Efficient simplification of point-sampled surfaces[C]//Proceedings of the Conference on Visualization' 02,2002:163-170.
  • 2Dyn N,Iske A,Wendland H.Meshfree thinning of 3D point clouds[J]. Foundations of Computational Mathematics, 2008,8 (4) : 409-425.
  • 3Song Hao,Feng Hsi-Yung.A progressive point cloud simplification algorithm with preserved sharp edge data[EB/OL].Int J Adv Manuf Technol, 2009.http://springer.lib.tsinghua.edu.cn/content/2r086737x58- 58818/fulltext .pdf.
  • 4Ohtake Y,Belyaev A,Seidel H P.A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions[C]//Proceedings of the Shape Modeling International 2003, 2003 : 153-161.
  • 5Cignoni P,Rocchini C,Scopigno R.Metro:Measuring error on simplified surfaces[J].Computer Graphics Forum, 1998,17(2) :283-390.
  • 6王宏涛,张丽艳,杜佶,李忠文,周儒荣.测量点集的简化及其隐式曲面重建误差分析[J].中国图象图形学报,2007,12(11):2114-2118. 被引量:16
  • 7杜晓晖,尹宝才,孔德慧.一种点云混合简化算法[J].计算机工程与应用,2007,43(34):43-45. 被引量:7
  • 8张丽艳,周儒荣,蔡炜斌,周来水.海量测量数据简化技术研究[J].计算机辅助设计与图形学学报,2001,13(11):1019-1023. 被引量:94

共引文献3

同被引文献309

引证文献38

二级引证文献299

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部