期刊文献+

基于混合高斯分布的红外人脸分割研究

Study of Infrared Human Face Based on Mixture Gaussian Distribution
下载PDF
导出
摘要 本文研究了基于混合高斯分布的红外人脸分割。先将人脸像素点用不同的高斯分布进行分类,再利用统计学的概率大小决定某个像素点应该是人脸皮肤,还是背景,达到分割目的。并对测试图像的每个像素点使用贝叶斯公式,使得分割的错误率达到最小。实验证明,用该方法进行红外人脸分割可以达到了比较理想的效果。 Infrared face segmentation is studied based on mixed Gaussian distribution.First face pixel is classifed with different Gaussian distribution.Then statistical probability is used to decide whether a pixel should be face skin or the background to achieve purpose At the same time, bayesian formula is used for each test pixel to have minimum error rate.The result shows that this method can achieve ideal effect of infrared face segmentation.
作者 曾华
出处 《长江工程职业技术学院学报》 CAS 2011年第2期5-8,共4页 Journal of Changjiang Institute of Technology
关键词 红外人脸分割 混合高斯分布 最小错误率 贝叶斯公式 infrared human face mixture Gaussian distribution minimum error rate Bayes formula
  • 相关文献

参考文献6

  • 1伍世虔,韦礼珍,方志军.红外人脸识别技术[J].中国图象图形学报,2008,13(12):2260-2269. 被引量:10
  • 2PROKOSKI F. History, current status. and future of infrared identification[C]//Proc of IEEE Workshop Computer Vision Beyond Visible Spectrum.. Methods and Applications. 2000.
  • 3伍世虔,韦礼珍,方志军,李润午.基于小波域PCA与LDA相结合的红外人脸识别方法[J].计算机应用研究,2008,25(5):1586-1588. 被引量:4
  • 4S. G. Kong, Jingu Heo, B.R. Abidi, J. Paik, M. A. Abidi, Recent advances in visual and infrared face recognition-a review[J], Computer Vision and Image Understanding,97, 2005:103 - 135.
  • 5毋立芳,沈兰荪,孔潇,朱旭娟.基于曲线拟合的人脸分割算法[J].计算机学报,2003,26(7):893-896. 被引量:7
  • 6I. Pavlidis, P. Tsiamyrtzis, C. Manohar, and P. Bud- dharaju, Biometrics:Face Recognition in Thermal Infrared [A] ,Biomedical Eng. Handbook, CRC press, Feb. 2006.

二级参考文献55

  • 1韦礼珍,伍世虔,方志军,李润午.基于血流图和小波包域傅立叶变换的红外人脸识别方法[J].计算机研究与发展,2007,44(z2):257-261. 被引量:1
  • 2刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080. 被引量:17
  • 3梁淑芬,甘俊英.基于局部小波变换与DCT的人脸识别算法[J].微计算机信息,2006(01Z):205-208. 被引量:14
  • 4Buddharaju P, Pavlidis I, Kakadiaris I A. Face recognition in the thermal infrared spectrum [ A ]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition Workshop [ C ], Washington DC, USA, 2004: 133 - 133.
  • 5Friedrieh G, Yeshurun Y. Seeing people in the dark: face recognition in infrared images [ A ]. In: Proceedings of the 2th International Workshop on Biologically Motivated Computer Vision [ C ], Tubingen, Germany, 2002 : 348 - 359.
  • 6Pereira D C. Face Recognition Using Infrared Imaging [ D ]. Monterey, CA, USA: Naval Postgraduate School, 2002.
  • 7Socolinsky D A, Selinger A. A comparative analysis of face recognition performance with visible and thermal infrared imagery [ A ]. In: Proceedings of International Conference on Pattern Recognition[ C], Quebec, Canada, 2002:217 - 222.
  • 8Socolinsky D A, Selinger A. Thermal face recognition in an operational scenario [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ], Washington DC, USA, 2004:1012 - 1019.
  • 9Socolinsky D A, Selinger A. Thermal face recognition over time [ A ]. In: Proceedings of International Conference on Pattern Recognition [ C ], Cambridge, UK, 2004 : 187 - 190.
  • 10Sfivastava A, Liu X. Statistical hypothesis pruning for identifying faces from infrared images [ J]. Image and Vision Computing, 2003, 21(7) : 651 -661.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部