期刊文献+

双线性简化方法求解两种孤子方程的新解 被引量:1

Solving the two kinds of soliton equations by the simplified bilinear method
下载PDF
导出
摘要 利用双线性方法的简化形式求解KdV方程和KP方程,得到了其新单孤子解、新双孤子解以及新N孤子解的解析表达式. The simplified version of Hirota bilinear method was used to solve the KdV equation and KP equation.The exact expressions of the new one-soltion solution,the new two-soltion solution and the new N-soliton solution are obtained.
出处 《山东理工大学学报(自然科学版)》 CAS 2011年第3期14-16,共3页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(70971079)
关键词 双线性简化方法 KDV方程 KP方程 新孤子解 simplified bilinear method KdV equation KP eqation new soliton solution
  • 相关文献

参考文献8

  • 1Hirota R. The direct toothed in soliton theory[M]. Cambridge .. Cambridge University Press,2004.
  • 2Hereman W, Nuseir A. Sybolic methods to construct exact so- lutions of nonlinear partial differential equations[J]. Math. Comput. Simulation, 1997,43 : 13-27.
  • 3Hereman W, Zhaung W. Symbolic software for soliton theory [J]. Acta Applicandae Mathematicae. Phys. Lett. A, 1980, 76: 95-96.
  • 4Hirota R, Satsuma J. N-soliton solution of the KdV equation with loss and nonuniformity terms[J]. J. Phys. Soe. Japan, 1976,41:2 141-2 142.
  • 5Freeman NC, Nimmo JJC. Solitons of the KdV and KP equa tions: the wronskian technique[J]. Phys. Lett. A, 1983,95 : 1-3.
  • 6Deng S F, Chen D Y. The novel multisolition of the KP equa- tion[J] . J. Phy. Soc. Japan,2001,70:3 174-3 175.
  • 7Nokamura A. Abilinear N-soliton formula for the KP equation [J]. J. Phys. Soc. Japan, 1989,58:412-422.
  • 8Han W T, Li Y S. Remarks an the solutions of the KP equation [J]. Phys. Lett. A, 2001,283:185-194.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部