期刊文献+

基于主被动遥感数据融合的土壤水分信息提取 被引量:16

Soil moisture information extraction based on integration of active and passive remote sensing data
下载PDF
导出
摘要 为改善西北半干旱地区的土壤含水率监测精度,该文选择张掖地区黑河流域为研究区,提出了一种基于主被动遥感融合数据贝叶斯网络分类的土壤水分信息提取方法。该方法依据光学与雷达遥感数据本身在反演土壤水方面的各自优势,首先利用小波变换与IHS结合的算法将TM5、4、3与ASAR数据融合,融合规则采用局部距离最大替代法,在突出融合影像细节的同时,一定程度上保留了TM数据的光谱信息。然后构建BN网络进行分类,以融合后新的R'、G'、B'分量和TM6波段作为网络的输入,输出为5个不同的类别,分别对应5个不同等级的土壤水分含量。经实测数据对融合前后分类结果的比较分析,结果表明,此方法在植被区能取得更好的效果,分类精度达到76.1%,对荒漠区效果欠佳。因此该方法在植被覆盖区对提取区域土壤水分信息是可行的、有效的。 For improving the precision of soil moisture monitoring,a classifier based on integration of both active and passive remote sensing data and the Bayesian Networks for inversion of soil moisture was presented and tested in Heihe river basin,a semi-arid area in the north-west of China.In the algorithm the wavelet transform and IHS were combined to integrate TM3,TM4,TM5 and ASAR data.The method of maximum distance in local region was adopted as the fusion rule for prominent expression of the detailed information in the fusion image,and the spectral information of TM could be retained.Then the new R 、G、B components in the fusion image and the TM6 were used as the input of the Bayesian network,and the outputs were five different categories corresponding to different levels of soil moisture values.The field measurement was carried out for validation of the method.A better result was acquired in vegetation coverage area,and the precision of classification could reach up to 76.1%,but ineffective in desert areas.So the method is applicable for reflecting the distribution of soil moisture in vegetation covered area.
作者 余凡 赵英时
出处 《农业工程学报》 EI CAS CSCD 北大核心 2011年第6期187-192,I0003,共7页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家重点基础研究发展计划(973项目)"陆表生态环境要素主被动遥感协同反演理论与方法"(2007CB714407) 中国测绘科学研究院科研基本业务经费(7771023)
关键词 土壤 水分 遥感 数据融合 贝叶斯分类 soils moisture remote sensing data fusion Bayesian Networks classification
  • 相关文献

参考文献18

  • 1刘振华,赵英时.遥感热惯量反演表层土壤水的方法研究[J].中国科学(D辑),2006,36(6):552-558. 被引量:28
  • 2陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感,1994,9(2):106-112. 被引量:176
  • 3Lambin E F, Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis[J]. International Journal of Remote Sensing, 1996, 17(3): 463-487.
  • 4李杏朝.微波遥感监测土壤水分的研究初探[J].遥感技术与应用,1995,10(4):1-8. 被引量:46
  • 5Wang Chenzhen, Qi Jiaguo, Susan Moran. Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery[J]. Remote Sensing of Environment, 2004, 90(2): 178-189.
  • 6Yesou H. Merging SEA-STA and SPOT Imagery for the study of geologic structure in a temperate agricultural region[J]. Remote Sensing and Environment, 1993, 43(3): 265 -280.
  • 7Dreyey P. Classification of land cover using optimized Neural Nets on SPOT data[J]. Photogrammetric Engineering and Remote Sensing, 1993, 59(5): 617-621.
  • 8Evans D. Multi-sensor classification of sedimentary rocks[J]. Remote Sensing and Environment, 1988, 25(2): 129-144.
  • 9Prout L S. Kogan F N. Drought monitoring and corn yield estimation in northern Canada from AVHRR data[J]. Remote Sensing Environment, 1984, 63(3): 219-232.
  • 10Ulaby F T. Crop classification using aribome radar and landsat Data[J]. IEEE Transaction on Geoscience and Remote Sensing, 1982, 20(1): 4251.

二级参考文献13

共引文献238

同被引文献292

引证文献16

二级引证文献380

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部